考研數(shù)學學習心得與總結匯總

| 麗麗21147

  統(tǒng)計表明:每年的研究生入學考試高等數(shù)學內(nèi)容較之前幾年都有較大的重復率,近年試題與往年考題雷同的占50%左右,這些考題或者改變某一數(shù)字,或改變一種說法,但解題的思路和所用到的知識點幾乎一樣。接下來小編在這裡給大家?guī)砜佳袛?shù)學學習心得,希望對你有所幫助!

  考研數(shù)學學習心得1

  考研數(shù)學沖刺線性代數(shù)??嫉膬?nèi)容

  ?一、行列式部分,強化概念性質,熟練行列式的求法

  在這里我們需要明確下面幾條:行列式對應的是一個數(shù)值,是一個實數(shù),明確這一點可以幫助我們檢查一些疏漏的低級錯誤;行列式的計算方法中常用的是定義法,比較重要的是加邊法,數(shù)學歸納法,降階法,利用行列式的性質對行列式進行恒等變形,化簡之后再按行或列展開。另外范德蒙行列式也是需要掌握的;行列式的考查方式分為低階的數(shù)字型矩陣和高階抽象行列式的計算、含參數(shù)的行列式的計算等。

  ?二、矩陣部分,重視矩陣運算,掌握矩陣秩的應用

  通過歷年真題分類統(tǒng)計與考點分布,矩陣部分的重點考點集中在逆矩陣、伴隨矩陣及矩陣方程,其內(nèi)容包括伴隨矩陣的定義、性質、行列式、逆矩陣、秩,在課堂輔導的時候會重點強調(diào).此外,伴隨矩陣的矩陣方程以及矩陣與行列式的結合也是需要同學們熟練掌握的細節(jié)。涉及秩的應用,包含矩陣的秩與向量組的秩之間的關系,矩陣等價與向量組等價,對矩陣的秩與方程組的解之間關系的分析,備考需要在理解概念的基礎上,系統(tǒng)地進行歸納總結,并做習題加以鞏固。

  ?三、向量部分,理解相關無關概念,靈活進行判定

  向量組的線性相關問題是向量部分的重中之重,也是考研線性代數(shù)每年必出的考點。如何掌握這部分內(nèi)容呢?首先在于對定義概念的理解,然后就是分析判定的重點,即:看是否存在一組全為零的或者有非零解的實數(shù)對?;A線性相關問題也會涉及類似的題型:判定向量組的線性相關性、向量組線性相關性的證明、判定一個向量能否由一向量組線性表出、向量組的秩和極大無關組的求法、有關秩的證明、有關矩陣與向量組等價的命題、與向量空間有關的命題。

  ?四、線性方程組部分,判斷解的個數(shù),明確通解的求解思路

  線性方程組解的情況,主要涵蓋了齊次線性方程組有非零解、非齊次線性方程組解的判定及解的結構、齊次線性方程組基礎解系的求解與證明以及帶參數(shù)的線性方程組的解的情況。通解的求法有兩種,若為齊次線性方程組,首先求解方程組的矩陣對應的行列式的值,在特征值為零和不為零的情況下分別進行討論,為零說明有解,帶入增廣矩陣化簡整理;不為零則有唯一解直接求出即可。若為非齊次方程組,則按照對增廣矩陣的討論進行求解。

  ?五、矩陣的特征值與特征向量部分,理解概念方法,掌握矩陣對角化的求解

  矩陣的特征值、特征向量部分可劃分為三給我板塊:特征值和特征向量的概念及計算、方陣的相似對角化、實對稱矩陣的正交相似對角化。相關題型有:數(shù)值矩陣的特征值和特征向量的求法、抽象矩陣特征值和特征向量的求法、判定矩陣的相似對角化、有關實對稱矩陣的問題。

  ?六、二次型部分,熟悉正定矩陣的判別,了解規(guī)范性和慣性定理

  二次型矩陣是二次型問題的一個基礎,且大部分都可以轉化為它的實對稱矩陣的問題來處理。另外二次型及其矩陣表示,二次型的秩和標準形等概念、二次型的規(guī)范形和慣性定理也是填空選擇題中的不可或缺的部分,二次型的標準化與矩陣對角化緊密相連,要會用配方法、正交變換化二次型為標準形;掌握二次型正定性的判別方法等等。

  考研數(shù)學學習心得2

  高數(shù)定理證明之微分中值定理:

  這一部分內(nèi)容比較豐富,包括費馬引理、羅爾定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求會證。

  費馬引理的條件有兩個:1.f'(_0)存在2.f(_0)為f(_)的極值,結論為f'(_0)=0??紤]函數(shù)在一點的導數(shù),用什么方法?自然想到導數(shù)定義。我們可以按照導數(shù)定義寫出f'(_0)的極限形式。往下如何推理?關鍵要看第二個條件怎么用。“f(_0)為f(_)的極值”翻譯成數(shù)學語言即f(_)-f(_0)<0(或>0),對_0的某去心鄰域成立。結合導數(shù)定義式中函數(shù)部分表達式,不難想到考慮函數(shù)部分的正負號。若能得出函數(shù)部分的符號,如何得到極限值的符號呢?極限的保號性是個橋梁。

  費馬引理中的“引理”包含著引出其它定理之意。那么它引出的定理就是我們下面要討論的羅爾定理。若在微分中值定理這部分推舉一個考頻最高的,那羅爾定理當之無愧。該定理的條件和結論想必各位都比較熟悉。條件有三:“閉區(qū)間連續(xù)”、“開區(qū)間可導”和“端值相等”,結論是在開區(qū)間存在一點(即所謂的中值),使得函數(shù)在該點的導數(shù)為0。

  該定理的證明不好理解,需認真體會:條件怎么用?如何和結論建立聯(lián)系?當然,我們現(xiàn)在討論該定理的證明是“馬后炮”式的:已經(jīng)有了證明過程,我們看看怎么去理解掌握。如果在羅爾生活的時代,證出該定理,那可是十足的創(chuàng)新,是要流芳百世的。

  閑言少敘,言歸正傳。既然我們討論費馬引理的作用是要引出羅爾定理,那么羅爾定理的證明過程中就要用到費馬引理。我們對比這兩個定理的結論,不難發(fā)現(xiàn)是一致的:都是函數(shù)在一點的導數(shù)為0。話說到這,可能有同學要說:羅爾定理的證明并不難呀,由費馬引理得結論不就行了。大方向對,但過程沒這么簡單。起碼要說清一點:費馬引理的條件是否滿足,為什么滿足?

  前面提過費馬引理的條件有兩個——“可導”和“取極值”,“可導”不難判斷是成立的,那么“取極值”呢?似乎不能由條件直接得到。那么我們看看哪個條件可能和極值產(chǎn)生聯(lián)系。注意到羅爾定理的第一個條件是函數(shù)在閉區(qū)間上連續(xù)。我們知道閉區(qū)間上的連續(xù)函數(shù)有很好的性質,哪條性質和極值有聯(lián)系呢?不難想到最值定理。

  那么最值和極值是什么關系?這個點需要想清楚,因為直接影響下面推理的走向。結論是:若最值取在區(qū)間內(nèi)部,則最值為極值;若最值均取在區(qū)間端點,則最值不為極值。那么接下來,分兩種情況討論即可:若最值取在區(qū)間內(nèi)部,此種情況下費馬引理條件完全成立,不難得出結論;若最值均取在區(qū)間端點,注意到已知條件第三條告訴我們端點函數(shù)值相等,由此推出函數(shù)在整個閉區(qū)間上的最大值和最小值相等,這意味著函數(shù)在整個區(qū)間的表達式恒為常數(shù),那在開區(qū)間上任取一點都能使結論成立。

  拉格朗日定理和柯西定理是用羅爾定理證出來的。掌握這兩個定理的證明有一箭雙雕的效果:真題中直接考過拉格朗日定理的證明,若再考這些原定理,那自然駕輕就熟;此外,這兩個的定理的證明過程中體現(xiàn)出來的基本思路,適用于證其它結論。

  以拉格朗日定理的證明為例,既然用羅爾定理證,那我們對比一下兩個定理的結論。羅爾定理的結論等號右側為零。我們可以考慮在草稿紙上對拉格朗日定理的結論作變形,變成羅爾定理結論的形式,移項即可。接下來,要從變形后的式子讀出是對哪個函數(shù)用羅爾定理的結果。這就是構造輔助函數(shù)的過程——看等號左側的式子是哪個函數(shù)求導后,把_換成中值的結果。這個過程有點像犯罪現(xiàn)場調(diào)查:根據(jù)這個犯罪現(xiàn)場,反推嫌疑人是誰。當然,構造輔助函數(shù)遠比破案要簡單,簡單的題目直接觀察;復雜一些的,可以把中值換成_,再對得到的函數(shù)求不定積分。

  高數(shù)定理證明之求導公式:

  2015年真題考了一個證明題:證明兩個函數(shù)乘積的導數(shù)公式。幾乎每位同學都對這個公式怎么用比較熟悉,而對它怎么來的較為陌生。實際上,從授課的角度,這種在2015年前從未考過的基本公式的證明,一般只會在基礎階段講到。如果這個階段的考生帶著急功近利的心態(tài)只關注結論怎么用,而不關心結論怎么來的,那很可能從未認真思考過該公式的證明過程,進而在考場上變得很被動。這里給2017考研學子提個醒:要重視基礎階段的復習,那些真題中未考過的重要結論的證明,有可能考到,不要放過。

  當然,該公式的證明并不難。先考慮f(_)_(_)在點_0處的導數(shù)。函數(shù)在一點的導數(shù)自然用導數(shù)定義考察,可以按照導數(shù)定義寫出一個極限式子。該極限為“0分之0”型,但不能用洛必達法則,因為分子的導數(shù)不好算(乘積的導數(shù)公式恰好是要證的,不能用!)。利用數(shù)學上常用的拼湊之法,加一項,減一項。這個“無中生有”的項要和前后都有聯(lián)系,便于提公因子。之后分子的四項兩兩配對,除以分母后考慮極限,不難得出結果。再由_0的任意性,便得到了f(_)_(_)在任意點的導數(shù)公式。

  高數(shù)定理證明之積分中值定理:

  該定理條件是定積分的被積函數(shù)在積分區(qū)間(閉區(qū)間)上連續(xù),結論可以形式地記成該定積分等于把被積函數(shù)拎到積分號外面,并把積分變量_換成中值。如何證明?可能有同學想到用微分中值定理,理由是微分相關定理的結論中含有中值??梢园凑沾怂悸吠路治觯贿^更易理解的思路是考慮連續(xù)相關定理(介值定理和零點存在定理),理由更充分些:上述兩個連續(xù)相關定理的結論中不但含有中值而且不含導數(shù),而待證的積分中值定理的結論也是含有中值但不含導數(shù)。

  若我們選擇了用連續(xù)相關定理去證,那么到底選擇哪個定理呢?這里有個小的技巧——看中值是位于閉區(qū)間還是開區(qū)間。介值定理和零點存在定理的結論中的中值分別位于閉區(qū)間和開區(qū)間,而待證的積分中值定理的結論中的中值位于閉區(qū)間。那么何去何從,已經(jīng)不言自明了。

  若順利選中了介值定理,那么往下如何推理呢?我們可以對比一下介值定理和積分中值定理的結論:介值定理的結論的等式一邊為某點處的函數(shù)值,而等號另一邊為常數(shù)A。我們自然想到把積分中值定理的結論朝以上的形式變形。等式兩邊同時除以區(qū)間長度,就能達到我們的要求。當然,變形后等號一側含有積分的式子的長相還是挺有迷惑性的,要透過現(xiàn)象看本質,看清楚定積分的值是一個數(shù),進而定積分除以區(qū)間長度后仍為一個數(shù)。這個數(shù)就相當于介值定理結論中的A。

  接下來如何推理,這就考察各位對介值定理的熟悉程度了。該定理條件有二:1.函數(shù)在閉區(qū)間連續(xù),2.實數(shù)A位于函數(shù)在閉區(qū)間上的最大值和最小值之間,結論是該實數(shù)能被取到(即A為閉區(qū)間上某點的函數(shù)值)。再看若積分中值定理的條件成立否能推出介值定理的條件成立。函數(shù)的連續(xù)性不難判斷,僅需說明定積分除以區(qū)間長度這個實數(shù)位于函數(shù)的最大值和最小值之間即可。而要考察一個定積分的值的范圍,不難想到比較定理(或估值定理)。

  高數(shù)定理證明之微積分基本定理:

  該部分包括兩個定理:變限積分求導定理和牛頓-萊布尼茨公式。

  變限積分求導定理的條件是變上限積分函數(shù)的被積函數(shù)在閉區(qū)間連續(xù),結論可以形式地理解為變上限積分函數(shù)的導數(shù)為把積分號扔掉,并用積分上限替換被積函數(shù)的自變量。注意該求導公式對閉區(qū)間成立,而閉區(qū)間上的導數(shù)要區(qū)別對待:對應開區(qū)間上每一點的導數(shù)是一類,而區(qū)間端點處的導數(shù)屬單側導數(shù)?;ㄩ_兩朵,各表一枝。我們先考慮變上限積分函數(shù)在開區(qū)間上任意點_處的導數(shù)。一點的導數(shù)仍用導數(shù)定義考慮。至于導數(shù)定義這個極限式如何化簡,筆者就不能剝奪讀者思考的權利了。單側導數(shù)類似考慮。

  “牛頓-萊布尼茨公式是聯(lián)系微分學與積分學的橋梁,它是微積分中最基本的公式之一。它證明了微分與積分是可逆運算,同時在理論上標志著微積分完整體系的形成,從此微積分成為一門真正的學科?!边@段話精彩地指出了牛頓-萊布尼茨公式在高數(shù)中舉足輕重的作用。而多數(shù)考生能熟練運用該公式計算定積分。不過,提起該公式的證明,熟悉的考生并不多。

  該公式和變限積分求導定理的公共條件是函數(shù)f(_)在閉區(qū)間連續(xù),該公式的另一個條件是F(_)為f(_)在閉區(qū)間上的一個原函數(shù),結論是f(_)在該區(qū)間上的定積分等于其原函數(shù)在區(qū)間端點處的函數(shù)值的差。該公式的證明要用到變限積分求導定理。若該公式的條件成立,則不難判斷變限積分求導定理的條件成立,故變限積分求導定理的結論成立。

  注意到該公式的另一個條件提到了原函數(shù),那么我們把變限積分求導定理的結論用原函數(shù)的語言描述一下,即f(_)對應的變上限積分函數(shù)為f(_)在閉區(qū)間上的另一個原函數(shù)。根據(jù)原函數(shù)的概念,我們知道同一個函數(shù)的兩個原函數(shù)之間只差個常數(shù),所以F(_)等于f(_)的變上限積分函數(shù)加某個常數(shù)C。萬事俱備,只差寫一下。將該公式右側的表達式結合推出的等式變形,不難得出結論。

  考研數(shù)學學習心得3

  考研高數(shù)考點預測:極限的計算

  1、等價無窮小的轉化,(只能在乘除時候使用,但是不是說一定在加減時候不能用,前提是必須證明拆分后極限依然存在,e的_次方-1或者(1+_)的a次方-1等價于A_等等。全部熟記(_趨近無窮的時候還原成無窮小)。

  2、洛必達法則(大題目有時候會有暗示要你使用這個方法)。首先他的使用有嚴格的使用前提!必須是_趨近而不是N趨近!(所以面對數(shù)列極限時候先要轉化成求_趨近情況下的極限,當然n趨近是_趨近的一種情況而已,是必要條件(還有一點數(shù)列極限的n當然是趨近于正無窮的,不可能是負無窮!)必須是函數(shù)的導數(shù)要存在!(假如告訴你g(_),沒告訴你是否可導,直接用,無疑于找死!!)必須是0比0無窮大比無窮大!當然還要注意分母不能為0。洛必達法則分為3種情況:0比0無窮比無窮時候直接用;0乘以無窮,無窮減去無窮(應為無窮大于無窮小成倒數(shù)的關系)所以無窮大都寫成了無窮小的倒數(shù)形式了。通項之后這樣就能變成第一種的形式了;0的0次方,1的無窮次方,無窮的0次方。對于(指數(shù)冪數(shù))方程方法主要是取指數(shù)還取對數(shù)的方法,這樣就能把冪上的函數(shù)移下來了,就是寫成0與無窮的形式了,(這就是為什么只有3種形式的原因,LN_兩端都趨近于無窮時候他的冪移下來趨近于0,當他的冪移下來趨近于無窮的時候,LN_趨近于0)。

  3、泰勒公式(含有e的_次方的時候,尤其是含有正余弦的加減的時候要特變注意!)E的_展開sina,展開cosa,展開ln1+_,對題目簡化有很好幫助。

  4、面對無窮大比上無窮大形式的解決辦法,取大頭原則最大項除分子分母!!!看上去復雜,處理很簡單!

  5、無窮小于有界函數(shù)的處理辦法,面對復雜函數(shù)時候,尤其是正余弦的復雜函數(shù)與其他函數(shù)相乘的時候,一定要注意這個方法。面對非常復雜的函數(shù),可能只需要知道它的范圍結果就出來了!

  6、夾逼定理(主要對付的是數(shù)列極限!)這個主要是看見極限中的函數(shù)是方程相除的形式,放縮和擴大。

  7、等比等差數(shù)列公式應用(對付數(shù)列極限)(q絕對值符號要小于1)。

  8、各項的拆分相加(來消掉中間的大多數(shù))(對付的還是數(shù)列極限)可以使用待定系數(shù)法來拆分化簡函數(shù)。

  9、求左右極限的方式(對付數(shù)列極限)例如知道_n與_n+1的關系,已知_n的極限存在的情況下,_n的極限與_n+1的極限時一樣的,因為極限去掉有限項目極限值不變化。

  10、兩個重要極限的應用。這兩個很重要!對第一個而言是_趨近0時候的sin_與_比值。第2個就如果_趨近無窮大,無窮小都有對有對應的形式(第2個實際上是用于函數(shù)是1的無窮的形式)(當?shù)讛?shù)是1的時候要特別注意可能是用地兩個重要極限)

  11、還有個方法,非常方便的方法,就是當趨近于無窮大時候,不同函數(shù)趨近于無窮的速度是不一樣的!_的_次方快于_!快于指數(shù)函數(shù),快于冪數(shù)函數(shù),快于對數(shù)函數(shù)(畫圖也能看出速率的快慢)!!當_趨近無窮的時候,他們的比值的極限一眼就能看出來了。

  12、換元法是一種技巧,不會對單一道題目而言就只需要換元,而是換元會夾雜其中。

  13、假如要算的話四則運算法則也算一種方法,當然也是夾雜其中的。

  14、還有對付數(shù)列極限的一種方法,就是當你面對題目實在是沒有辦法,走投無路的時候可以考慮轉化為定積分。一般是從0到1的形式。

  15、單調(diào)有界的性質,對付遞推數(shù)列時候使用證明單調(diào)性!

  16、直接使用求導數(shù)的定義來求極限,(一般都是_趨近于0時候,在分子上f(_加減某個值)加減f(_)的形式,看見了要特別注意)(當題目中告訴你F(0)=0時候f(0)導數(shù)=0的時候,就是暗示你一定要用導數(shù)定義!

  函數(shù)是表皮,函數(shù)的性質也體現(xiàn)在積分微分中。例如他的奇偶性質他的周期性。還有復合函數(shù)的性質:

  1、奇偶性,奇函數(shù)關于原點對稱偶函數(shù)關于軸對稱偶函數(shù)左右2邊的圖形一樣(奇函數(shù)相加為0);

  2、周期性也可用在導數(shù)中在定積分中也有應用定積分中的函數(shù)是周期函數(shù)積分的周期和他的一致;

  3、復合函數(shù)之間是自變量與應變量互換的關系;

  4、還有個單調(diào)性。(再求0點的時候可能用到這個性質!(可以導的函數(shù)的單調(diào)性和他的導數(shù)正負相關):o再就是總結一下間斷點的問題(應為一般函數(shù)都是連續(xù)的所以間斷點是對于間斷函數(shù)而言的)間斷點分為第一類和第二類剪斷點。第一類是左右極限都存在的(左右極限存在但是不等跳躍的的間斷點或者左右極限存在相等但是不等于函數(shù)在這點的值可取的間斷點;第二類間斷點是震蕩間斷點或者是無窮極端點(這也說明極限即使不存在也有可能是有界的)。

  考研數(shù)學學習心得4

  考研數(shù)學臨場答題注意要點

  (1)不要粗心大意犯最低級的錯誤

  拿到考卷以后,先把名字及其他試卷要求信息寫上,雖然這是最基本的常識,但每年都有不少考生會犯這個低級錯誤。

  (2)瀏覽整套試卷

  將試卷瀏覽一遍,看看哪些題目自己比較熟悉,哪些題沒有思路,這套卷子大概哪部分做起來會比較困難,做到心中有數(shù),以便合理分配時間。

  (3)切忌心中發(fā)慌

  如果這套題看起來有很多陌生的題,也不要心慌。畢竟有些試題萬變不離其宗,相信只要做到心中不亂、仔細思考就會產(chǎn)生思路。

  (4)合理掌握時間

  如果一道考題思考了大約有二十分鐘仍然沒有思路,可以先暫時放棄這道題目,不要在一道試題上花費太多的時間,導致會做的題反而沒有時間去做,那就太可惜了。

  (5)學會適當放棄

  當確實沒有思路的時候要暫時放棄,如果放棄的是一道選擇題,建議大家標記一下此題,防止因此題使答題卡順序涂錯,如果時間充足還可再做。

  但是,標記要慎重,以免被視為作弊,可以用鉛筆標記,交試卷之前用橡皮察去。

  (6)確定做題順序

  在做題順序上可以采用選擇、填空、計算、證明的順序。完成選擇填空后,做大題時,先通觀整個試題,明確哪些分數(shù)是必得的,哪些是可能得到的,哪些是根本得不到的,再采取不同的對應方式,才能鎮(zhèn)定自如,進退有據(jù),最終從總體上獲勝。

  比如說,如果你對概率部分的題比較熟悉,那么這部分的題做題就是有套路,那你就可以先把概率部分做了。通常來說,概率部分是三門課中最簡單最好拿分的。其次就是線代了,當然線代兩個大題可能有一個難度稍微大一點,另外一個難度相對比較小,那么你可以選擇把其中簡單一點的,自己有思路的那題先做了。最后再來做高數(shù)部分的題,高數(shù)一共有5個大題,如果是數(shù)一的同學,出現(xiàn)難題通常是在無窮級數(shù),中值定理,曲線、曲面積分,應用題。也就是說高數(shù)部分有一道大題是相對簡單的,可以先把這道題做了,通常這道題也就是在大題的第一題。就是說,這4道大題,一定要先把分給拿住了。最后再來解決稍微難一點的。當然剩下的幾個題,也要有選擇性的來做,如果有一點思路的,可以先考慮,完全沒有思路的最后處理。

  (7)適當運用做題技巧

  做選擇題的時候,可以巧妙的運用圖示法和特殊值法。這兩種方法很有效,平時用得人很多,當然不是對所有的選擇題都適用。

  做大題的時候,對于前面說的完全沒有思路的題不要一點不寫,寫一些相關的內(nèi)容得一點“步驟分”。

  (8)做題要細心

  做題時一定要仔細,該拿分的一定要拿住。尤其是選擇題和填空題,因為體現(xiàn)的只是最后結果,一個小小的錯誤都會令一切努力功虧一簣。很多同學認為選擇和填空的分值不大而對其認識不夠,把主要的精力都放在了大題上面,但是需要引起大家注意的是:兩道選擇或填空題的分值就相當于一道大題,如果這類題目失分過多,僅靠大題是很難把分數(shù)提很高的。做完一道選擇、填空題時只需要大家再仔細的驗算一遍即可,并不需要一定要等到做完考卷以后再檢查,而且這樣也不會花費大家很長時間。

  (9)注意步驟的完整性

  解答題的分數(shù)很高,相應的對于考生知識點的考察也更全面一些,有些考題甚至包含了三、四個考察點,因此要求考生答題時相應的知識點應該在卷面上有所體現(xiàn),步驟過簡勢必會影響分數(shù)。

  (10)注意問題之間的聯(lián)系

  好多試題的問題并非一個,尤其是概率題,對于此類考題的第一問一定要引起注意。因為它的第二問,甚至第三問可能會與第一問產(chǎn)生直接或間接的聯(lián)系,第一問如果答錯將會導致第二、三問的錯誤,那么這道考題的分數(shù)就會失分很多。

  (11)試卷檢查

  如果答完考卷,最好是將試卷再仔細的看一遍,看看還有沒有落題。然后再將答題卡與選項核對一下,防止順序涂錯。如果不能保證答完以后還有時間,可以在把填空題答完后就核對一下。

  (12)書寫要整潔

  要保持卷面的整潔和美觀,以獲得“印象分”。字如果寫得不好沒關系,至少要寫得工整,這樣批改試卷的老師也會給一定的分數(shù)。相反如果自己思路對了,但是寫得亂七八糟的很有可能被扣掉小部分分數(shù)。

  (13)保持良好的心態(tài)

  不要把自己弄的特別的緊張,就把他當作是一次很平常的考試去對待。數(shù)學只有靜下心來才能把題答好。如果上來就緊張的不行,那自己本來會做的題,可能對于你來說也是一道難題。這部分其實與前面說的選擇做題順序很有關系,你上來大題就做出了4個,對于你做其它的大題是一種信心上的鼓舞,那其它的題做出來的概率就比較大

  考研數(shù)學學習心得5

  考研數(shù)學復習失分的原因

  ?填空題失分點

  (1)考查點:填空題比較多的是考查基本運算和基本概念,或者說填空題比較多的是計算。

  (2)失分原因:運算的準確率比較差,這種填空題出的計算題題本身不難,同學們出錯的原因主要是不夠細心。

  (3)對策:這就要求同學們復習的時候些基本的運算題不能只看不算。同學們平時對一些基本的運算題也要認真解答,要在每一種類型的計算題里面拿出一定量進行練習。

  ?選擇題失分點

  (1)考查點:

  選擇題一共有八道題,這部分丟分的原因跟填空題出錯原因有差異,選擇題考的重點跟填空題不一樣,填空題主要考基本運算概念,而選擇題很少考計算題,它主要考察基本的概念和理論,主要是容易混淆的概念和理論。

  (2)失分原因:

  首先,有些題目確實具有一定的難度。其次,有些同學在復習過程中將重點放在了計算題上,而忽視了基礎知識,導致基礎知識不扎實。最后,缺乏一定的方法和技巧。由于對這種方法不了解,用常規(guī)的方法做,使簡單的題變成了復雜的題。

  (3)對策:

  第一,基本理論和基本概念是薄弱環(huán)節(jié)的同學,就必須在這下功夫,復習一個定理一個性質的時候,即要注意它的內(nèi)涵又要注意相應的外延。平時在復習的時候要注意基本的概念和理論。

  第二,客觀題有一些方法和技巧,通常做客觀題用直接法,這是用得比較多的,但是也有一些選擇題用排除法更為簡單,考研的卷子里邊有很多題用排除法一眼就可以看出結果,所以要注意這些技巧。

  ?計算題失分點

  (1)考查點:

  計算題在整份試卷中占絕大部分,還有一部分是證明題,計算題就是要解決計算的準確率的問題。

  (2)失分原因:

  運算的準確率比較差。

  (3)對策:

  首先,多做練習是關鍵?;镜倪\算必須要練熟,數(shù)學跟復習政治英語不一樣,數(shù)學不是完全靠背,要理解以后通過一定的練習掌握方法,并且一定自己要實踐。其次,還有一類題就是證明題,如果出了證明題一般來說這部分就是難點。證明題里面有幾個難點的地方是經(jīng)??疾斓牡胤剑瑢W們復習的時候要注意知識難點的規(guī)律和使用方法。

  建議大家從復習初期就開始為自己準備兩個筆記本,一本用于專門整理自己在復習當中遇到過的不懂的知識點,并且將一些容易出錯、容易發(fā)生混淆的概念、公式、定理內(nèi)容記錄在筆記本上,定期拿出來看一下,這樣,一定會留下非常深刻的印象,避免遺忘出錯。

  另一本用來整理錯題,同學們在復習全程中會遇到許多許多不同類型的題目,對自己曾經(jīng)不會做的、做錯了的題目不要看過標準答案后就輕易放過,應當及時地把它們整理一下,在正確解答過程的后面簡單標注一下自己出錯的原因、不會做的癥結,以后再回頭看的時候一定會起到很大的幫助,這也是循序漸進穩(wěn)步提高解題能力的關鍵環(huán)節(jié)。


考研數(shù)學學習心得與總結匯總相關文章:

1.考研數(shù)學學習與復習心得交流

2.自考心得總結與學習方法總結

3.關于網(wǎng)絡課程學習心得總結5篇

4.關于網(wǎng)絡課程學習心得總結5篇

5.關于網(wǎng)課學習心得總結500字5篇

6.自考本科學習心得體會與學習總結

7.關于網(wǎng)課學習心得總結500字5篇

8.小學期中數(shù)學考試心得總結

9.2020學生網(wǎng)絡學習心得體會以及收獲最新大全5篇

10.最新2020英語的學習心得總結范文5篇

7479