高二數(shù)學(xué)教案模板范文

| 新華0

通過(guò)編寫(xiě)教案,教師可以明確教學(xué)目標(biāo)、教學(xué)內(nèi)容和教學(xué)計(jì)劃,以便更好地組織教學(xué),從而提高教學(xué)質(zhì)量和效率。怎么寫(xiě)出優(yōu)秀的高二數(shù)學(xué)教案模板范文?這里給大家分享高二數(shù)學(xué)教案模板范文,方便大家學(xué)習(xí)。

高二數(shù)學(xué)教案模板范文篇1

一.說(shuō)教材

地位及重要性

函數(shù)的單調(diào)性一節(jié)屬高中數(shù)學(xué)第一冊(cè)(上)的必修內(nèi)容,在高考的重要考查范圍之內(nèi)。函數(shù)的單調(diào)性是函數(shù)的一個(gè)重要性質(zhì),也是在研究函數(shù)時(shí)經(jīng)常要注意的一個(gè)性質(zhì),并且在比較幾個(gè)數(shù)的大小、對(duì)函數(shù)的定性分析以及與其他知識(shí)的綜合應(yīng)用上都有廣泛的應(yīng)用。通過(guò)對(duì)這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生掌握函數(shù)單調(diào)性的概念和證明函數(shù)單調(diào)性的步驟,又可加深對(duì)函數(shù)的本質(zhì)認(rèn)識(shí)。也為今后研究具體函數(shù)的性質(zhì)作了充分準(zhǔn)備,起到承上啟下的作用。

教學(xué)目標(biāo)

(1)了解能用文字語(yǔ)言和符號(hào)語(yǔ)言正確表述增函數(shù)、減函數(shù)、單調(diào)性、單調(diào)區(qū)間的概念;

(2)了解能用圖形語(yǔ)言正確表述具有單調(diào)性的函數(shù)的圖象特征;

(3)明確掌握利用函數(shù)單調(diào)性定義證明函數(shù)單調(diào)性的方法與步驟;并能用定義證明某些簡(jiǎn)單函數(shù)的單調(diào)性;

(4)培養(yǎng)學(xué)生嚴(yán)密的邏輯思維能力、用運(yùn)動(dòng)變化、數(shù)形結(jié)合、分類(lèi)討論的方法去分析和處理問(wèn)題,以提高學(xué)生的思維品質(zhì);同時(shí)讓學(xué)生體驗(yàn)數(shù)學(xué)的藝術(shù)美,養(yǎng)成用辨證唯物主義的觀點(diǎn)看問(wèn)題。

教學(xué)重難點(diǎn)

重點(diǎn)是對(duì)函數(shù)單調(diào)性的有關(guān)概念的本質(zhì)理解。

難點(diǎn)是利用函數(shù)單調(diào)性的概念證明或判斷具體函數(shù)的單調(diào)性。

二.說(shuō)教法

根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實(shí)際水平,我嘗試運(yùn)用“問(wèn)題解決”與“多媒體輔助教學(xué)”的模式。力圖通過(guò)提出問(wèn)題、思考問(wèn)題、解決問(wèn)題的過(guò)程,讓學(xué)生主動(dòng)參與以達(dá)到對(duì)知識(shí)的“發(fā)現(xiàn)”與接受,進(jìn)而完成對(duì)知識(shí)的內(nèi)化,使書(shū)本知識(shí)成為自己知識(shí);同時(shí)也培養(yǎng)學(xué)生的探索精神。

三.說(shuō)學(xué)法

在教學(xué)過(guò)程中,教師設(shè)置問(wèn)題情景讓學(xué)生想辦法解決;通過(guò)教師的啟發(fā)點(diǎn)撥,學(xué)生的不斷探索,最終把解決問(wèn)題的核心歸結(jié)到判斷函數(shù)的單調(diào)性。然后通過(guò)對(duì)函數(shù)單調(diào)性的概念的學(xué)習(xí)理解,最終把問(wèn)題解決。整個(gè)過(guò)程學(xué)生學(xué)生主動(dòng)參與、積極思考、探索嘗試的動(dòng)態(tài)活動(dòng)之中;同時(shí)讓學(xué)生體驗(yàn)到了學(xué)習(xí)數(shù)學(xué)的快樂(lè),培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力和以嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度研究問(wèn)題的習(xí)慣。

四.說(shuō)過(guò)程

通過(guò)設(shè)置問(wèn)題情景、課堂導(dǎo)入、新課講授及終結(jié)階段的教學(xué)中,我力求培養(yǎng)學(xué)生的自主學(xué)習(xí)的能力,以點(diǎn)撥、啟發(fā)、引導(dǎo)為教師職責(zé)。

高二數(shù)學(xué)教案模板范文篇2

【教學(xué)目標(biāo)】

1.知識(shí)與技能

(1)學(xué)生通過(guò)自主學(xué)習(xí),初步理解集合的概念,理解元素與集合間的關(guān)系,了解集合元素的確定性、互異性,無(wú)序性,知道常用數(shù)集及其記法;

(2)掌握集合的常用表示法——列舉法和描述法。

2.過(guò)程與方法

通過(guò)實(shí)例了解集合的含義,體會(huì)元素與集合的“屬于”關(guān)系,能選擇合適的語(yǔ)言(如自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言)描述不同的具體問(wèn)題,提高語(yǔ)言轉(zhuǎn)換和抽象概括能力,樹(shù)立用集合語(yǔ)言表示數(shù)學(xué)內(nèi)容的意識(shí)。

3.情態(tài)與價(jià)值

在掌握基本概念的基礎(chǔ)上,能夠解決相關(guān)問(wèn)題,獲得數(shù)學(xué)學(xué)習(xí)的成就感,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力,培養(yǎng)學(xué)生的應(yīng)用意識(shí)。

【重點(diǎn)難點(diǎn)】

1.教學(xué)重點(diǎn):集合的基本概念與表示方法。

2.教學(xué)難點(diǎn):選擇合適的方法正確表示集合。

【教學(xué)思路】

通過(guò)實(shí)例以及學(xué)生熟悉的數(shù)集,引入集合的概念,進(jìn)而給出集合的表示方法,學(xué)生通過(guò)自我體會(huì)、自主學(xué)習(xí)、自我總結(jié)達(dá)到掌握本節(jié)課內(nèi)容的目的。教學(xué)過(guò)程按照“提出問(wèn)題——學(xué)生討論——?dú)w納總結(jié)——獲得新知——自我檢測(cè)”環(huán)節(jié)安排。

高二數(shù)學(xué)教案模板范文篇3

教學(xué)目標(biāo)

1.理解的概念,掌握的通項(xiàng)公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題.

(1)正確理解的定義,了解公比的概念,明確一個(gè)數(shù)列是的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是,了解等比中項(xiàng)的概念;

(2)正確認(rèn)識(shí)使用的表示法,能靈活運(yùn)用通項(xiàng)公式求的首項(xiàng)、公比、項(xiàng)數(shù)及指定的項(xiàng);

(3)通過(guò)通項(xiàng)公式認(rèn)識(shí)的性質(zhì),能解決某些實(shí)際問(wèn)題.

2.通過(guò)對(duì)的研究,逐步培養(yǎng)學(xué)生觀察、類(lèi)比、歸納、猜想等思維品質(zhì).

3.通過(guò)對(duì)概念的歸納,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)密的思維習(xí)慣,以及實(shí)事求是的科學(xué)態(tài)度.

教學(xué)建議

教材分析

(1)知識(shí)結(jié)構(gòu)

是另一個(gè)簡(jiǎn)單常見(jiàn)的數(shù)列,研究?jī)?nèi)容可與等差數(shù)列類(lèi)比,首先歸納出的定義,導(dǎo)出通項(xiàng)公式,進(jìn)而研究圖像,又給出等比中項(xiàng)的概念,最后是通項(xiàng)公式的應(yīng)用.

(2)重點(diǎn)、難點(diǎn)分析

教學(xué)重點(diǎn)是的定義和對(duì)通項(xiàng)公式的認(rèn)識(shí)與應(yīng)用,教學(xué)難點(diǎn)在于通項(xiàng)公式的推導(dǎo)和運(yùn)用.

①與等差數(shù)列一樣,也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項(xiàng)公式得出的特性,這些是教學(xué)的重點(diǎn).

②雖然在等差數(shù)列的學(xué)習(xí)中曾接觸過(guò)不完全歸納法,但對(duì)學(xué)生來(lái)說(shuō)仍然不熟悉;在推導(dǎo)過(guò)程中,需要學(xué)生有一定的觀察分析猜想能力;第一項(xiàng)是否成立又須補(bǔ)充說(shuō)明,所以通項(xiàng)公式的推導(dǎo)是難點(diǎn).

③對(duì)等差數(shù)列、的綜合研究離不開(kāi)通項(xiàng)公式,因而通項(xiàng)公式的靈活運(yùn)用既是重點(diǎn)又是難點(diǎn).

教學(xué)建議

(1)建議本節(jié)課分兩課時(shí),一節(jié)課為的概念,一節(jié)課為通項(xiàng)公式的應(yīng)用.

(2)概念的引入,可給出幾個(gè)具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到的定義.也可將幾個(gè)等差數(shù)列和幾個(gè)混在一起給出,由學(xué)生將這些數(shù)列進(jìn)行分類(lèi),有一種是按等差、等比來(lái)分的,由此對(duì)比地概括的定義.

(3)根據(jù)定義讓學(xué)生分析的公比不為0,以及每一項(xiàng)均不為0的特性,加深對(duì)概念的理解.

(4)對(duì)比等差數(shù)列的表示法,由學(xué)生歸納的各種表示法.啟發(fā)學(xué)生用函數(shù)觀點(diǎn)認(rèn)識(shí)通項(xiàng)公式,由通項(xiàng)公式的結(jié)構(gòu)特征畫(huà)數(shù)列的圖象.

(5)由于有了等差數(shù)列的研究經(jīng)驗(yàn),的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).

(6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用.

教學(xué)設(shè)計(jì)示例

課題:的概念

教學(xué)目標(biāo)

1.通過(guò)教學(xué)使學(xué)生理解的概念,推導(dǎo)并掌握通項(xiàng)公式.

2.使學(xué)生進(jìn)一步體會(huì)類(lèi)比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.

3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.

教學(xué)重點(diǎn),難點(diǎn)

重點(diǎn)、難點(diǎn)是的定義的歸納及通項(xiàng)公式的推導(dǎo).

教學(xué)用具

投影儀,多媒體軟件,電腦.

教學(xué)方法

討論、談話法.

教學(xué)過(guò)程

一、提出問(wèn)題

給出以下幾組數(shù)列,將它們分類(lèi),說(shuō)出分類(lèi)標(biāo)準(zhǔn).(幻燈片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由學(xué)生發(fā)表意見(jiàn)(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類(lèi)),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類(lèi)數(shù)列(學(xué)生看不出③的情況也無(wú)妨,得出定義后再考察③是否為).

二、講解新課

請(qǐng)學(xué)生說(shuō)出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類(lèi)似的例子,如變形蟲(chóng)分裂問(wèn)題.假設(shè)每經(jīng)過(guò)一個(gè)單位時(shí)間每個(gè)變形蟲(chóng)都分裂為兩個(gè)變形蟲(chóng),再假設(shè)開(kāi)始有一個(gè)變形蟲(chóng),經(jīng)過(guò)一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲(chóng),經(jīng)過(guò)兩個(gè)單位時(shí)間就有了四個(gè)變形蟲(chóng),…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲(chóng)個(gè)數(shù)得到了一列數(shù)這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類(lèi)數(shù)列——.(這里播放變形蟲(chóng)分裂的多媒體軟件的第一步)

(板書(shū))

1.的定義(板書(shū))

根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來(lái)的.教師寫(xiě)出的定義,標(biāo)注出重點(diǎn)詞語(yǔ).

請(qǐng)學(xué)生指出②③④⑥⑦各自的公比,并思考有無(wú)數(shù)列既是等差數(shù)列又是.學(xué)生通過(guò)觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問(wèn),還有沒(méi)有其他的例子,讓學(xué)生再舉兩例.而后請(qǐng)學(xué)生概括這類(lèi)數(shù)列的一般形式,學(xué)生可能說(shuō)形如的數(shù)列都滿足既是等差又是,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是,當(dāng)時(shí),它只是等差數(shù)列,而不是.教師追問(wèn)理由,引出對(duì)的認(rèn)識(shí):

2.對(duì)定義的認(rèn)識(shí)(板書(shū))

(1)的首項(xiàng)不為0;

(2)的每一項(xiàng)都不為0,即;

問(wèn)題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為的什么條件?

(3)公比不為0.

用數(shù)學(xué)式子表示的定義.

是①.在這個(gè)式子的寫(xiě)法上可能會(huì)有一些爭(zhēng)議,如寫(xiě)成,可讓學(xué)生研究行不行,好不好;接下來(lái)再問(wèn),能否改寫(xiě)為是?為什么不能?

式子給出了數(shù)列第項(xiàng)與第項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)?(不能)確定一個(gè)需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式.

3.的通項(xiàng)公式(板書(shū))

問(wèn)題:用和表示第項(xiàng).

①不完全歸納法

.

②疊乘法

,…,,這個(gè)式子相乘得,所以.

(板書(shū))(1)的通項(xiàng)公式

得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式.

(板書(shū))(2)對(duì)公式的認(rèn)識(shí)

由學(xué)生來(lái)說(shuō),最后歸結(jié):

①函數(shù)觀點(diǎn);

②方程思想(因在等差數(shù)列中已有認(rèn)識(shí),此處再?gòu)?fù)習(xí)鞏固而已).

這里強(qiáng)調(diào)方程思想解決問(wèn)題.方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類(lèi)問(wèn)題).解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)

如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.

三、小結(jié)

1.本節(jié)課研究了的概念,得到了通項(xiàng)公式;

2.注意在研究?jī)?nèi)容與方法上要與等差數(shù)列相類(lèi)比;

3.用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用.

四、作業(yè)(略)

五、板書(shū)設(shè)計(jì)

1.等比數(shù)列的定義

2.對(duì)定義的認(rèn)識(shí)

3.等比數(shù)列的通項(xiàng)公式

(1)公式

(2)對(duì)公式的認(rèn)識(shí)

探究活動(dòng)

將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米.

參考答案:

30次后,厚度為,這個(gè)厚度超過(guò)了世界的山峰——珠穆朗瑪峰的高度.如果紙?jiān)俦∫恍?,比如紙?.001毫米,對(duì)折34次就超過(guò)珠穆朗瑪峰的高度了.還記得國(guó)王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(用對(duì)數(shù)算也行).

高二數(shù)學(xué)教案模板范文篇4

教材分析

因式分解是代數(shù)式的一種重要恒等變形?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對(duì)因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個(gè)公式,但絲毫沒(méi)有否定因式分解的教育價(jià)值及其在代數(shù)運(yùn)算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運(yùn)算的基礎(chǔ)上提出來(lái)的,事實(shí)上,它是整式乘法的逆向運(yùn)用,與整式乘法運(yùn)算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡(jiǎn)、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個(gè)教材中起到了承上啟下的作用。本章的教育價(jià)值還體現(xiàn)在使學(xué)生接受對(duì)立統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見(jiàn)、解決問(wèn)題的能力。

學(xué)情分析

通過(guò)探究平方差公式和運(yùn)用平方差公式分解因式的活動(dòng)中,讓學(xué)生發(fā)表自己的觀點(diǎn),從交流中獲益,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志建立自信心。

教學(xué)目標(biāo)

1、在分解因式的過(guò)程中體會(huì)整式乘法與因式分解之間的聯(lián)系。

2、通過(guò)公式a-b=(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類(lèi)比、等能力,發(fā)展有條理地思考及語(yǔ)言表達(dá)能力。

3、能運(yùn)用提公因式法、公式法進(jìn)行綜合運(yùn)用。

4、通過(guò)活動(dòng)4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):靈活運(yùn)用平方差公式進(jìn)行分解因式。

難點(diǎn):平方差公式的推導(dǎo)及其運(yùn)用,兩種因式分解方法(提公因式法、平方差公式)的綜合運(yùn)用。

高二數(shù)學(xué)教案模板范文篇5

一、教材分析

【教材地位及作用】

基本不等式又稱(chēng)為均值不等式,選自普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修5第3章第3節(jié)內(nèi)容。教學(xué)對(duì)象為高二學(xué)生,本節(jié)課為第一課時(shí),重在研究基本不等式的證明及幾何意義。本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和掌握了不等式性質(zhì)的基礎(chǔ)上展開(kāi)的,作為重要的基本不等式之一,為后續(xù)進(jìn)一步了解不等式的性質(zhì)及運(yùn)用,研究最值問(wèn)題奠定基礎(chǔ)。因此基本不等式在知識(shí)體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,它也是對(duì)學(xué)生進(jìn)行情感價(jià)值觀教育的好素材,所以基本不等式應(yīng)重點(diǎn)研究。

【教學(xué)目標(biāo)】

依據(jù)《新課程標(biāo)準(zhǔn)》對(duì)《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實(shí)際情況,特確定如下目標(biāo):

知識(shí)與技能目標(biāo):理解掌握基本不等式,理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;

過(guò)程與方法目標(biāo):通過(guò)探究基本不等式,使學(xué)生體會(huì)知識(shí)的形成過(guò)程,培養(yǎng)分析、解決問(wèn)題的能力;

情感與態(tài)度目標(biāo):通過(guò)問(wèn)題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來(lái),培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過(guò)數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。

【教學(xué)重難點(diǎn)】

重點(diǎn):理解掌握基本不等式,能借助幾何圖形說(shuō)明基本不等式的意義。

難點(diǎn):利用基本不等式推導(dǎo)不等式.

關(guān)鍵是對(duì)基本不等式的理解掌握.

二、教法分析

本節(jié)課采用觀察——感知——抽象——?dú)w納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線,從實(shí)際問(wèn)題出發(fā),放手讓學(xué)生探究思索。利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動(dòng)得以充分展開(kāi),從而優(yōu)化了教學(xué)過(guò)程,大大提高了課堂教學(xué)效率.

三、學(xué)法指導(dǎo)

新課改的精神在于以學(xué)生的發(fā)展為本,把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,倡導(dǎo)積極主動(dòng),勇于探索的學(xué)習(xí)方法,因此,本課主要采取以自主探索與合作交流的學(xué)習(xí)方式,通過(guò)讓學(xué)生想一想,做一做,用一用,建構(gòu)起自己的知識(shí),使學(xué)生成為學(xué)習(xí)的主人。

四、教學(xué)過(guò)程

教學(xué)過(guò)程設(shè)計(jì)以問(wèn)題為中心,以探究解決問(wèn)題的方法為主線展開(kāi)。這種安排強(qiáng)調(diào)過(guò)程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過(guò)程成為學(xué)生對(duì)知識(shí)的再創(chuàng)造、再發(fā)現(xiàn)的過(guò)程,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。

高二數(shù)學(xué)教案模板范文篇6

教學(xué)目標(biāo)

1.掌握平面向量的數(shù)量積及其幾何意義;

2.掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;

3.了解用平面向量的數(shù)量積可以處理有關(guān)長(zhǎng)度、角度和垂直的問(wèn)題;

4.掌握向量垂直的條件.

教學(xué)重難點(diǎn)

教學(xué)重點(diǎn):平面向量的數(shù)量積定義

教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用

教學(xué)工具

投影儀

教學(xué)過(guò)程

一、復(fù)習(xí)引入:

1.向量共線定理向量與非零向量共線的充要條件是:有且只有一個(gè)非零實(shí)數(shù)λ,使=λ

五,課堂小結(jié)

(1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過(guò)的知識(shí)內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?

(2)在本節(jié)課的學(xué)習(xí)過(guò)程中,還有那些不太明白的地方,請(qǐng)向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?

六、課后作業(yè)

P107習(xí)題2.4A組2、7題

課后小結(jié)

(1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過(guò)的知識(shí)內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?

(2)在本節(jié)課的學(xué)習(xí)過(guò)程中,還有那些不太明白的地方,請(qǐng)向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?

課后習(xí)題

作業(yè)

P107習(xí)題2.4A組2、7題

高二數(shù)學(xué)教案模板范文篇7

一、設(shè)計(jì)構(gòu)思

1、設(shè)計(jì)理念

注重發(fā)展學(xué)生的創(chuàng)新意識(shí)。學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不應(yīng)只限于接受、記憶、模仿和練習(xí),倡導(dǎo)學(xué)生積極主動(dòng)探索、動(dòng)手實(shí)踐與相互合作交流的數(shù)學(xué)學(xué)習(xí)方式。這種方式有助于發(fā)揮學(xué)生學(xué)習(xí)主動(dòng)性,使學(xué)生的學(xué)習(xí)過(guò)程成為在教師引導(dǎo)下的“再創(chuàng)造”過(guò)程。我們應(yīng)積極創(chuàng)設(shè)條件,讓學(xué)生體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,發(fā)展他們的創(chuàng)新意識(shí)。

注重提高學(xué)生數(shù)學(xué)思維能力。課堂教學(xué)是促進(jìn)學(xué)生數(shù)學(xué)思維能力發(fā)展的主陣地。問(wèn)題解決是培養(yǎng)學(xué)生思維能力的主要途徑。所設(shè)計(jì)的問(wèn)題應(yīng)有利于學(xué)生主動(dòng)地進(jìn)行觀察、實(shí)驗(yàn)、猜測(cè)、驗(yàn)證、推理與交流等教學(xué)活動(dòng)。內(nèi)容的呈現(xiàn)應(yīng)采用不同的表達(dá)方式,以滿足多樣化的學(xué)習(xí)需求。伴隨新的問(wèn)題發(fā)現(xiàn)和問(wèn)題解決后成功感的滿足,由此刺激學(xué)生非認(rèn)知深層系統(tǒng)的良性運(yùn)行,使其產(chǎn)生“樂(lè)學(xué)”的余味,學(xué)生學(xué)習(xí)的積極性與主動(dòng)性在教學(xué)中便自發(fā)生成。本節(jié)主要安排應(yīng)用類(lèi)比法進(jìn)行探討,加深學(xué)生對(duì)類(lèi)比法的體會(huì)與應(yīng)用。

注重學(xué)生多層次的發(fā)展。在問(wèn)題解決的探究過(guò)程中應(yīng)體現(xiàn)“以人為本”,充分體現(xiàn)“人人學(xué)有價(jià)值的數(shù)學(xué),人人都能獲得必需的數(shù)學(xué)”,“不同的人在數(shù)學(xué)上得到不同的發(fā)展”的教學(xué)理念。有意義的數(shù)學(xué)學(xué)習(xí)必須建立在學(xué)生的主觀愿望和知識(shí)經(jīng)驗(yàn)基礎(chǔ)之上,而學(xué)生的基礎(chǔ)知識(shí)和學(xué)習(xí)能力是多層次的,所以設(shè)計(jì)的問(wèn)題也應(yīng)有層次性,使各層次學(xué)生都得到發(fā)展。

注重信息技術(shù)與數(shù)學(xué)課程的整合。高中數(shù)學(xué)課程應(yīng)盡量使用科學(xué)型計(jì)算器,各種數(shù)學(xué)教育技術(shù)平臺(tái),加強(qiáng)數(shù)學(xué)教學(xué)與信息技術(shù)的結(jié)合,鼓勵(lì)學(xué)生運(yùn)用計(jì)算機(jī)、計(jì)算器等進(jìn)行探索和發(fā)現(xiàn)。

另外,在數(shù)學(xué)教學(xué)中,強(qiáng)調(diào)數(shù)學(xué)本質(zhì)的同時(shí),也讓學(xué)生通過(guò)適度的形式化,較好的理解和使用數(shù)學(xué)概念、性質(zhì)。

2、教材分析

冪函數(shù)是江蘇教育出版社普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)(必修1)第二章第四節(jié)的內(nèi)容。該教學(xué)內(nèi)容在人教版試驗(yàn)修訂本(必修)中已被刪去。標(biāo)準(zhǔn)將該內(nèi)容重新提出,正是考慮到冪函數(shù)在實(shí)際生活的應(yīng)用。故在教學(xué)過(guò)程及后繼學(xué)習(xí)過(guò)程中,應(yīng)能夠讓學(xué)生體會(huì)其實(shí)際應(yīng)用。《標(biāo)準(zhǔn)》將冪函數(shù)限定為五個(gè)具體函數(shù),通過(guò)研究它們來(lái)了解冪函數(shù)的性質(zhì)。其中,學(xué)生在初中已經(jīng)學(xué)習(xí)了y=x、y=x2、y=x-1等三個(gè)簡(jiǎn)單的冪函數(shù),對(duì)它們的圖象和性質(zhì)已經(jīng)有了一定的感性認(rèn)識(shí)?,F(xiàn)在明確提出冪函數(shù)的概念,有助于學(xué)生形成完整的知識(shí)結(jié)構(gòu)。學(xué)生已經(jīng)了解了函數(shù)的基本概念、性質(zhì)和圖象,研究了兩個(gè)特殊函數(shù):指數(shù)函數(shù)和對(duì)數(shù)函數(shù),對(duì)研究函數(shù)已經(jīng)有了基本思路和方法。因此,教材安排學(xué)習(xí)冪函數(shù),除內(nèi)容本身外,掌握研究函數(shù)的一般思想方法是另一目的,另外應(yīng)讓學(xué)生了解利用信息技術(shù)來(lái)探索函數(shù)圖象及性質(zhì)是一個(gè)重要途徑。該內(nèi)容安排一課時(shí)。

3、教學(xué)目標(biāo)的確定

鑒于上述對(duì)教材的分析和新課程的理念確定如下教學(xué)目標(biāo):

⑴掌握冪函數(shù)的形式特征,掌握具體冪函數(shù)的圖象和性質(zhì)。

⑵能應(yīng)用冪函數(shù)的圖象和性質(zhì)解決有關(guān)簡(jiǎn)單問(wèn)題。

⑶加深學(xué)生對(duì)研究函數(shù)性質(zhì)的基本方法和流程的經(jīng)驗(yàn)。

⑷培養(yǎng)學(xué)生觀察、分析、歸納能力。了解類(lèi)比法在研究問(wèn)題中的作用。

⑸滲透辨證唯物主義觀點(diǎn)和方法論,培養(yǎng)學(xué)生運(yùn)用具體問(wèn)題具體分析的方法分析問(wèn)題、解決問(wèn)題的能力。

4、教學(xué)方法和教具的選擇

基于對(duì)課程理念的理解和對(duì)教材的分析,運(yùn)用問(wèn)題情境可以使學(xué)生較快的進(jìn)入數(shù)學(xué)知識(shí)情景,使學(xué)生對(duì)數(shù)學(xué)知識(shí)結(jié)構(gòu)作主動(dòng)性的擴(kuò)展,通過(guò)問(wèn)題的導(dǎo)引,學(xué)生對(duì)數(shù)學(xué)問(wèn)題探究,進(jìn)行數(shù)學(xué)建構(gòu),并能運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題,讓學(xué)生有運(yùn)用數(shù)學(xué)成功的體驗(yàn)。本課采用教師在學(xué)生原有的知識(shí)經(jīng)驗(yàn)和方法上,引導(dǎo)學(xué)生提出問(wèn)題、解決問(wèn)題的教學(xué)方法,體現(xiàn)以學(xué)生為主體,教師主導(dǎo)作用的教學(xué)思想。

教具:多媒體。制作多媒體課件以提高教學(xué)效率。

5、教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn)是從具體冪函數(shù)歸納認(rèn)識(shí)冪函數(shù)的一些性質(zhì)并作簡(jiǎn)單應(yīng)用。

難點(diǎn)是引導(dǎo)學(xué)生概括出冪函數(shù)性質(zhì)。

6、教學(xué)流程

基于新課程理念在教學(xué)過(guò)程中的體現(xiàn),教學(xué)流程的基線為:

考慮到學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)函數(shù)與對(duì)數(shù)函數(shù),對(duì)函數(shù)的學(xué)習(xí)、研究有了一定的經(jīng)驗(yàn)和基本方法,所以教學(xué)流程又分兩條線,一條以?xún)?nèi)容為明線,另一條以研究函數(shù)的基本內(nèi)容和方法為暗線,教學(xué)過(guò)程中同時(shí)展開(kāi)。

明線:

暗線:

二、實(shí)施方案

問(wèn)題導(dǎo)引師生活動(dòng)設(shè)計(jì)意圖

問(wèn)題情境⑴寫(xiě)出下列y關(guān)于x的函數(shù)解析式:

①正方形邊長(zhǎng)x、面積y

②正方體棱長(zhǎng)x、體積y

③正方形面積x、邊長(zhǎng)y

④某人騎車(chē)x秒內(nèi)勻速前進(jìn)了1km,騎車(chē)速度為y

⑤一物體位移y與位移時(shí)間x,速度1m/s

學(xué)生口答,教師板書(shū)答案?;脽羝菔締?wèn)題。

由具體問(wèn)題入手,從熟悉的情景引入,提高學(xué)生的參與程度。符合學(xué)生認(rèn)識(shí)特點(diǎn)。

⑵上述函數(shù)解析式有什么共同特征?是否為指數(shù)函數(shù)?學(xué)生相互討論,必要時(shí),教師將解析式寫(xiě)成指數(shù)冪形式,以啟發(fā)學(xué)生歸納。投影演示定義。引導(dǎo)學(xué)生觀察,訓(xùn)練學(xué)生歸納能力。并與前面知識(shí)進(jìn)行區(qū)分,以進(jìn)一步幫助學(xué)生明晰概念。

⑶判別下列函數(shù)中有幾個(gè)冪函數(shù)?

①y=②y=2x2③y=x④y=x2+x⑤y=-x3

學(xué)生獨(dú)立思考,回答。學(xué)生鑒別?;脽羝菔绢}目。

鞏固概念,強(qiáng)化學(xué)生對(duì)概念形式特征的把握。

⑷冪函數(shù)具有哪些性質(zhì)?研究函數(shù)應(yīng)該是哪些方面的內(nèi)容。前面指數(shù)函數(shù)、對(duì)數(shù)函數(shù)研究了哪些內(nèi)容?

學(xué)生討論,教師引導(dǎo)。學(xué)生回答。

引導(dǎo)學(xué)生回想前面學(xué)習(xí)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的研究?jī)?nèi)容和過(guò)程。啟發(fā)學(xué)生用類(lèi)比思想進(jìn)行研究?jī)绾瘮?shù)。

⑸冪函數(shù)的定義域是否與對(duì)數(shù)函數(shù)、指數(shù)函數(shù)一樣,具有相同的定義域?學(xué)生小組討論,得到結(jié)論。引導(dǎo)學(xué)生舉例研究。結(jié)論:冪指數(shù)不同,定義域并不完全相同,應(yīng)區(qū)別對(duì)待。

激發(fā)學(xué)生探討的欲望,提高學(xué)生主動(dòng)參與程度。

⑹寫(xiě)出下列函數(shù)的定義域,并指出它們的奇偶性:①y=x②y=③y=x④y=x

學(xué)生解答,并歸納解決辦法。引導(dǎo)學(xué)生與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)對(duì)照比較。(幻燈片演示)引導(dǎo)學(xué)生具體問(wèn)題具體分析,并作簡(jiǎn)單歸納:分?jǐn)?shù)指數(shù)應(yīng)化成根式,負(fù)指數(shù)寫(xiě)成正數(shù)指數(shù)再寫(xiě)出定義域。冪函數(shù)的奇偶性也應(yīng)具體分析。

⑺上述函數(shù)的單調(diào)性如何?如何判斷?

學(xué)生思考:作圖引發(fā)學(xué)生作圖研究函數(shù)性質(zhì)的興趣。函數(shù)單調(diào)性的判斷,既可以使用定義,也可以通過(guò)圖象解決,直觀,易理解。

⑻在同一坐標(biāo)系內(nèi)作出上述函數(shù)的圖象。學(xué)生作圖,教師巡視。將學(xué)生作圖用實(shí)物投影儀演示,指出優(yōu)點(diǎn)和錯(cuò)誤之處。教師利用幾何畫(huà)板演示(附圖1)通過(guò)超級(jí)鏈接幾何畫(huà)板演示。訓(xùn)練學(xué)生作圖的基本功,加強(qiáng)學(xué)生的實(shí)踐,讓學(xué)生在自己的經(jīng)驗(yàn)中認(rèn)識(shí)冪函數(shù)的圖象。避免教師直接使用計(jì)算機(jī)演示圖象,剝奪學(xué)生動(dòng)手的機(jī)會(huì)。

⑼上述函數(shù)圖象有哪些共同點(diǎn)?學(xué)生討論,總結(jié)。教師引導(dǎo)。可將學(xué)生已熟悉的函數(shù)y=,y=x一同投影,幫助學(xué)生觀察。(投影演示結(jié)論)

訓(xùn)練學(xué)生觀察分析能力。

⑽回答第7個(gè)問(wèn)題。

學(xué)生思考,回答。教師注意學(xué)生敘述的嚴(yán)密。訓(xùn)練學(xué)生的語(yǔ)言敘述能力。再次體會(huì)與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)性質(zhì)的區(qū)別。體會(huì)冪指數(shù)的不同情況對(duì)函數(shù)單調(diào)性的影響。

⑾圖象之間有什么區(qū)別?特別是在分布上。與常數(shù)有什么聯(lián)系?

教師通過(guò)幾何畫(huà)板演示圖象在第一象限內(nèi)的變化規(guī)律,以驗(yàn)證學(xué)生猜想。通過(guò)超級(jí)鏈接幾何畫(huà)板演示。(附圖2)

這是較高要求,可以讓學(xué)生自由猜想和發(fā)言。進(jìn)一步提高學(xué)生觀察,歸納能力。

⑿鞏固練習(xí)寫(xiě)出下列函數(shù)的定義域,并指出它們的奇偶性和單調(diào)性:①y=x②y=x③y=x。

學(xué)生獨(dú)立思考并回答。

訓(xùn)練學(xué)生自覺(jué)運(yùn)用冪函數(shù)圖象性質(zhì)的基本規(guī)律。

⒀簡(jiǎn)單應(yīng)用1:比較下列各組中兩個(gè)值的大小,并說(shuō)明理由:

①0.75,0.76;

②(-0.95),(-0.96);

③0.23,0.24;

④0.31,0.31

學(xué)生思考,作答,教師引導(dǎo)學(xué)生敘述語(yǔ)言的邏輯性。

訓(xùn)練學(xué)生用函數(shù)性質(zhì)進(jìn)行解釋?zhuān)瑥?qiáng)化學(xué)生邏輯意識(shí)。其中第④小題是利用指數(shù)函數(shù)性質(zhì)解決,注意區(qū)別。

⒁請(qǐng)學(xué)生考慮可以如何驗(yàn)證上述答案的正確。

學(xué)生實(shí)踐。使用計(jì)算器驗(yàn)證,提高學(xué)生使用學(xué)習(xí)工具的意識(shí)。

⒂簡(jiǎn)單應(yīng)用2:冪函數(shù)y=(m-3m-3)x在區(qū)間上是減函數(shù),求m的值。

學(xué)生思考,作答。教師板演。對(duì)冪函數(shù)定義進(jìn)一步鞏固,對(duì)函數(shù)性質(zhì)作初步應(yīng)用。同時(shí)訓(xùn)練學(xué)生對(duì)初步答案進(jìn)行篩選。

⒃簡(jiǎn)單應(yīng)用2:

已知(a+1)<(3-2a),試求a的取值范圍。

學(xué)生思考,作答。教師板演。

訓(xùn)練學(xué)生靈活使用性質(zhì)解題。

數(shù)學(xué)交流⒄小結(jié):今天的學(xué)習(xí)內(nèi)容和方法有哪些?你有哪些收獲和經(jīng)驗(yàn)?學(xué)生思考、小組討論,教師引導(dǎo)。讓學(xué)生回顧,小結(jié),將對(duì)學(xué)生形成知識(shí)系統(tǒng)產(chǎn)生積極影響。

數(shù)學(xué)再現(xiàn)

⒅布置作業(yè):

課本p.732、3、4、思考5思考5作為訓(xùn)練學(xué)生應(yīng)用數(shù)學(xué)于實(shí)際的較好例子,應(yīng)讓能力較好學(xué)生得到充分發(fā)展。

幾點(diǎn)說(shuō)明:

⑴本節(jié)課開(kāi)始時(shí)要注意用相關(guān)熟悉例子引入新課。

⑵畫(huà)函數(shù)圖象時(shí),如果學(xué)生已能夠運(yùn)用計(jì)算器或相關(guān)計(jì)算機(jī)軟件作圖,可以讓學(xué)生自己操作,以提高學(xué)生探索問(wèn)題的興趣和能力,并提高教學(xué)效率。

⑶由于課程標(biāo)準(zhǔn)對(duì)冪函數(shù)的研究范圍有相對(duì)限制,故第11個(gè)問(wèn)題要求較高,建議視具體情況選擇教學(xué)。

⑷本設(shè)計(jì)相關(guān)課件采用PowerPoint演示文稿,其中部分使用超級(jí)鏈接至幾何畫(huà)板(4.06版本)進(jìn)行演示。

高二數(shù)學(xué)教案模板范文篇8

教學(xué)目標(biāo)

熟練掌握三角函數(shù)式的求值

教學(xué)重難點(diǎn)

熟練掌握三角函數(shù)式的求值

教學(xué)過(guò)程

【知識(shí)點(diǎn)精講】

三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形

三角函數(shù)式的求值的類(lèi)型一般可分為:

(1)“給角求值”:給出非特殊角求式子的值。仔細(xì)觀察非特殊角的特點(diǎn),找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角

(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解

(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。

(4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進(jìn)行化簡(jiǎn),再求之

三角函數(shù)式常用化簡(jiǎn)方法:切割化弦、高次化低次

注意點(diǎn):靈活角的變形和公式的變形

重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論

【課堂小結(jié)】

三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形

三角函數(shù)式的求值的類(lèi)型一般可分為:

(1)“給角求值”:給出非特殊角求式子的值。仔細(xì)觀察非特殊角的特點(diǎn),找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角

(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解

(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。

(4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進(jìn)行化簡(jiǎn),再求之

三角函數(shù)式常用化簡(jiǎn)方法:切割化弦、高次化低次

注意點(diǎn):靈活角的變形和公式的變形

重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論

高二數(shù)學(xué)教案模板范文篇9

知識(shí)結(jié)構(gòu)

重點(diǎn)與難點(diǎn)分析:

本節(jié)課教學(xué)方法主要是“自學(xué)輔導(dǎo)與發(fā)現(xiàn)探究法”。力求體現(xiàn)知識(shí)結(jié)構(gòu)完整、知識(shí)理解完整;注重學(xué)生的參與度,在師生共同參與下,探索問(wèn)題、動(dòng)手試驗(yàn)、發(fā)現(xiàn)規(guī)律、做出歸納。讓學(xué)生直接參加課堂活動(dòng),將教與學(xué)融為一體。具體說(shuō)明如下:

(1)由“先教后學(xué)”轉(zhuǎn)向“先學(xué)后教

本節(jié)課開(kāi)始,讓同學(xué)們自己思考問(wèn)題:判定三角形全等的方法有四種,如果這兩個(gè)三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠?學(xué)生展開(kāi)討論,初步形成意見(jiàn),然后由教師答疑。這樣促進(jìn)了學(xué)生學(xué)習(xí),體現(xiàn)了以“學(xué)生為主體”的教育思想。

(2)在層次教學(xué)中培養(yǎng)學(xué)生的思維能力

本節(jié)課的層次主要表現(xiàn)為兩個(gè)方面:一是對(duì)公理的多層次理解;二是綜合練習(xí)的多層次變化。

公理的多層次理解包括:明確公理的條件及結(jié)論;公理的文字語(yǔ)言、圖形語(yǔ)言、符號(hào)語(yǔ)言的理解及掌握;公理的作用。這里特別強(qiáng)調(diào)三個(gè)方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。

綜合練習(xí)的多層次變化:首先給出直接應(yīng)用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應(yīng)用題目。這里注意兩點(diǎn):一是給出題目后先讓學(xué)生獨(dú)立思考,并按教材的形式嚴(yán)格書(shū)寫(xiě)。二是給出的綜合題目有一定的難度,教學(xué)時(shí),要注意引導(dǎo)學(xué)生分析問(wèn)題解決問(wèn)題的思考方法。

教法建議:

由“先教后學(xué)”轉(zhuǎn)向“先學(xué)后教”

本節(jié)課開(kāi)始,讓同學(xué)們自己思考問(wèn)題:判定三角形全等的方法有四種,如果這兩個(gè)三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠?學(xué)生展開(kāi)討論,初步形成意見(jiàn),然后由教師答疑。這樣促進(jìn)了學(xué)生學(xué)習(xí),體現(xiàn)了以“學(xué)生為主體”的教育思想。

(2)在層次教學(xué)中培養(yǎng)學(xué)生的思維能力

本節(jié)課的層次主要表現(xiàn)為兩個(gè)方面:一是對(duì)公理的多層次理解;二是綜合練習(xí)的多層次變化。

公理的多層次理解包括:明確公理的條件及結(jié)論;公理的文字語(yǔ)言、圖形語(yǔ)言、符號(hào)語(yǔ)言的理解及掌握;公理的作用。這里特別強(qiáng)調(diào)三個(gè)方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。

綜合練習(xí)的.多層次變化:首先給出直接應(yīng)用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應(yīng)用題目。

這里注意兩點(diǎn):

一是給出題目后先讓學(xué)生獨(dú)立思考,并按教材的形式嚴(yán)格書(shū)寫(xiě)。

二是給出的綜合題目有一定的難度,教學(xué)時(shí),要注意引導(dǎo)學(xué)生分析問(wèn)題解決問(wèn)題的思考方法。

高二數(shù)學(xué)教案模板范文篇10

教學(xué)目標(biāo)

(1)掌握?qǐng)A的標(biāo)準(zhǔn)方程,能根據(jù)圓心坐標(biāo)和半徑熟練地寫(xiě)出圓的標(biāo)準(zhǔn)方程,也能根據(jù)圓的標(biāo)準(zhǔn)方程熟練地寫(xiě)出圓的圓心坐標(biāo)和半徑.

(2)掌握?qǐng)A的一般方程,了解圓的一般方程的結(jié)構(gòu)特征,熟練掌握?qǐng)A的標(biāo)準(zhǔn)方程和一般方程之間的互化.

(3)了解參數(shù)方程的概念,理解圓的參數(shù)方程,能夠進(jìn)行圓的普通方程與參數(shù)方程之間的互化,能應(yīng)用圓的參數(shù)方程解決有關(guān)的簡(jiǎn)單問(wèn)題.

(4)掌握直線和圓的位置關(guān)系,會(huì)求圓的切線.

(5)進(jìn)一步理解曲線方程的概念、熟悉求曲線方程的方法.

教學(xué)建議

教材分析

(1)知識(shí)結(jié)構(gòu)

(2)重點(diǎn)、難點(diǎn)分析

①本節(jié)內(nèi)容教學(xué)的重點(diǎn)是圓的標(biāo)準(zhǔn)方程、一般方程、參數(shù)方程的推導(dǎo),根據(jù)條件求圓的方程,用圓的方程解決相關(guān)問(wèn)題.

②本節(jié)的難點(diǎn)是圓的一般方程的結(jié)構(gòu)特征,以及圓方程的求解和應(yīng)用.

教法建議

(1)圓是最簡(jiǎn)單的曲線.這節(jié)教材安排在學(xué)習(xí)了曲線方程概念和求曲線方程之后,學(xué)習(xí)三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學(xué)習(xí)做好準(zhǔn)備.同時(shí),有關(guān)圓的問(wèn)題,特別是直線與圓的位置關(guān)系問(wèn)題,也是解析幾何中的基本問(wèn)題,這些問(wèn)題的解決為圓錐曲線問(wèn)題的解決提供了基本的思想方法.因此教學(xué)中應(yīng)加強(qiáng)練習(xí),使學(xué)生確實(shí)掌握這一單元的知識(shí)和方法.

(2)在解決有關(guān)圓的問(wèn)題的過(guò)程中多次用到配方法、待定系數(shù)法等思想方法,教學(xué)中應(yīng)多總結(jié).

(3)解決有關(guān)圓的問(wèn)題,要經(jīng)常用到一元二次方程的理論、平面幾何知識(shí)和前邊學(xué)過(guò)的解析幾何的基本知識(shí),教師在教學(xué)中要注意多復(fù)習(xí)、多運(yùn)用,培養(yǎng)學(xué)生運(yùn)算能力和簡(jiǎn)化運(yùn)算過(guò)程的意識(shí).

(4)有關(guān)圓的內(nèi)容非常豐富,有很多有價(jià)值的問(wèn)題.建議適當(dāng)選擇一些內(nèi)容供學(xué)生研究.例如由過(guò)圓上一點(diǎn)的切線方程引申到切點(diǎn)弦方程就是一個(gè)很有價(jià)值的問(wèn)題.類(lèi)似的還有圓系方程等問(wèn)題.

教學(xué)設(shè)計(jì)示例

圓的一般方程

教學(xué)目標(biāo):

(1)掌握?qǐng)A的一般方程及其特點(diǎn).

(2)能將圓的一般方程轉(zhuǎn)化為圓的標(biāo)準(zhǔn)方程,從而求出圓心和半徑.

(3)能用待定系數(shù)法,由已知條件求出圓的一般方程.

(4)通過(guò)本節(jié)課學(xué)習(xí),進(jìn)一步掌握配方法和待定系數(shù)法.

教學(xué)重點(diǎn):(1)用配方法,把圓的一般方程轉(zhuǎn)化成標(biāo)準(zhǔn)方程,求出圓心和半徑.

(2)用待定系數(shù)法求圓的方程.

教學(xué)難點(diǎn):圓的一般方程特點(diǎn)的研究.

教學(xué)用具:計(jì)算機(jī).

教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法.

教學(xué)過(guò)程:

【引入】

前邊已經(jīng)學(xué)過(guò)了圓的標(biāo)準(zhǔn)方程

把它展開(kāi)得

任何圓的方程都可以通過(guò)展開(kāi)化成形如

的方程

【問(wèn)題1】

形如①的方程的曲線是否都是圓?

師生共同討論分析:

如果①表示圓,那么它一定是某個(gè)圓的標(biāo)準(zhǔn)方程展開(kāi)整理得到的我們把它再寫(xiě)成原來(lái)的形式不就可以看出來(lái)了嗎?運(yùn)用配方法,得

顯然②是不是圓方程與是什么樣的數(shù)密切相關(guān),具體如下:

(1)當(dāng)時(shí),②表示以為圓心、以為半徑的圓;

(2)當(dāng)時(shí),②表示一個(gè)點(diǎn);

(3)當(dāng)時(shí),②不表示任何曲線.

總結(jié):任意形如①的方程可能表示一個(gè)圓,也可能表示一個(gè)點(diǎn),還有可能什么也不表示.

圓的一般方程的定義:

當(dāng)時(shí),①表示以為圓心、以為半徑的圓,

此時(shí)①稱(chēng)作圓的一般方程.

即稱(chēng)形如的方程為圓的一般方程.

【問(wèn)題2】圓的一般方程的特點(diǎn),與圓的標(biāo)準(zhǔn)方程的異同.

(1)和的系數(shù)相同,都不為0.

(2)沒(méi)有形如的二次項(xiàng).

圓的一般方程與一般的二元二次方程

相比較,上述(1)、(2)兩個(gè)條件僅是③表示圓的必要條件,而不是充分條件或充要條件.

圓的一般方程與圓的標(biāo)準(zhǔn)方程各有千秋:

(1)圓的標(biāo)準(zhǔn)方程帶有明顯的幾何的影子,圓心和半徑一目了然.

(2)圓的一般方程表現(xiàn)出明顯的代數(shù)的形式與結(jié)構(gòu),更適合方程理論的運(yùn)用.

【實(shí)例分析】

例1:下列方程各表示什么圖形.

(1);

(2);

一、教學(xué)內(nèi)容分析

向量作為工具在數(shù)學(xué)、物理以及實(shí)際生活中都有著廣泛的應(yīng)用.

本小節(jié)的重點(diǎn)是結(jié)合向量知識(shí)證明數(shù)學(xué)中直線的平行、垂直問(wèn)題,以及不等式、三角公式的證明、物理學(xué)中的應(yīng)用.

二、教學(xué)目標(biāo)設(shè)計(jì)

1、通過(guò)利用向量知識(shí)解決不等式、三角及物理問(wèn)題,感悟向量作為一種工具有著廣泛的應(yīng)用,體會(huì)從不同角度去看待一些數(shù)學(xué)問(wèn)題,使一些數(shù)學(xué)知識(shí)有機(jī)聯(lián)系,拓寬解決問(wèn)題的思路.

2、了解構(gòu)造法在解題中的運(yùn)用.

三、教學(xué)重點(diǎn)及難點(diǎn)

重點(diǎn):平面向量知識(shí)在各個(gè)領(lǐng)域中應(yīng)用.

難點(diǎn):向量的構(gòu)造.

四、教學(xué)流程設(shè)計(jì)

五、教學(xué)過(guò)程設(shè)計(jì)

一、復(fù)習(xí)與回顧

1、提問(wèn):下列哪些量是向量?

(1)力(2)功(3)位移(4)力矩

2、上述四個(gè)量中,(1)(3)(4)是向量,而(2)不是,那它是什么?

[說(shuō)明]復(fù)習(xí)數(shù)量積的有關(guān)知識(shí).

二、學(xué)習(xí)新課

例1(書(shū)中例5)

向量作為一種工具,不僅在物理學(xué)科中有廣泛的應(yīng)用,同時(shí)它在數(shù)學(xué)學(xué)科中也有許多妙用!請(qǐng)看

例2(書(shū)中例3)

證法(一)原不等式等價(jià)于,由基本不等式知(1)式成立,故原不等式成立.

證法(二)向量法

[說(shuō)明]本例關(guān)鍵引導(dǎo)學(xué)生觀察不等式結(jié)構(gòu)特點(diǎn),構(gòu)造向量,并發(fā)現(xiàn)(等號(hào)成立的充要條件是)

例3(書(shū)中例4)

[說(shuō)明]本例的關(guān)鍵在于構(gòu)造單位圓,利用向量數(shù)量積的兩個(gè)公式得到證明.

二、鞏固練習(xí)

1、如圖,某人在靜水中游泳,速度為km/h.

(1)如果他徑直游向河對(duì)岸,水的流速為4km/h,他實(shí)際沿什么方向前進(jìn)?速度大小為多少?

答案:沿北偏東方向前進(jìn),實(shí)際速度大小是8km/h.

(2)他必須朝哪個(gè)方向游才能沿與水流垂直的方向前進(jìn)?實(shí)際前進(jìn)的速度大小為多少?

答案:朝北偏西方向前進(jìn),實(shí)際速度大小為km/h.

三、課堂小結(jié)

1、向量在物理、數(shù)學(xué)中有著廣泛的應(yīng)用.

2、要學(xué)會(huì)從不同的角度去看一個(gè)數(shù)學(xué)問(wèn)題,是數(shù)學(xué)知識(shí)有機(jī)聯(lián)系.

四、作業(yè)布置

1、書(shū)面作業(yè):課本P73,練習(xí)8.44

高二數(shù)學(xué)教案模板范文篇11

教學(xué)目標(biāo)

1.了解函數(shù)的單調(diào)性和奇偶性的概念,把握有關(guān)證實(shí)和判定的基本方法.

(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.

(2)能從數(shù)和形兩個(gè)角度熟悉單調(diào)性和奇偶性.

(3)能借助圖象判定一些函數(shù)的單調(diào)性,能利用定義證實(shí)某些函數(shù)的單調(diào)性;能用定義判定某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過(guò)程.

2.通過(guò)函數(shù)單調(diào)性的證實(shí),提高學(xué)生在代數(shù)方面的推理論證能力;通過(guò)函數(shù)奇偶性概念的形成過(guò)程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從非凡到一般的數(shù)學(xué)思想.

3.通過(guò)對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂(lè)于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.

教學(xué)建議

一、知識(shí)結(jié)構(gòu)

(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.

(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.

二、重點(diǎn)難點(diǎn)分析

(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉.教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),把握單調(diào)性的證實(shí).

(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過(guò),但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語(yǔ)言去刻畫(huà)它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來(lái)說(shuō)是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證實(shí)是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證實(shí),也沒(méi)有意識(shí)到它的重要性,所以單調(diào)性的證實(shí)自然就是教學(xué)中的難點(diǎn).

三、教法建議

(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性熟悉出發(fā),通過(guò)問(wèn)題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問(wèn)題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來(lái)解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語(yǔ)言表示出來(lái).在這個(gè)過(guò)程中對(duì)一些關(guān)鍵的詞語(yǔ)(某個(gè)區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來(lái).

(2)函數(shù)單調(diào)性證實(shí)的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.

函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開(kāi)始,逐漸讓在數(shù)軸上動(dòng)起來(lái),觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫(xiě)出來(lái).經(jīng)歷了這樣的過(guò)程,再得到等式時(shí),就比較輕易體會(huì)它代表的是無(wú)數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱(chēng)的問(wèn)題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱(chēng)性,同時(shí)還可以借助圖象(如)說(shuō)明定義域關(guān)于原點(diǎn)對(duì)稱(chēng)只是函數(shù)具備奇偶性的必要條件而不是充分條件.

函數(shù)的奇偶性教學(xué)設(shè)計(jì)方案

教學(xué)目標(biāo)

1.使學(xué)生了解奇偶性的概念,回會(huì)利用定義判定簡(jiǎn)單函數(shù)的奇偶性.

2.在奇偶性概念形成過(guò)程中,培養(yǎng)學(xué)生的觀察,歸納能力,同時(shí)滲透數(shù)形結(jié)合和非凡到一般的思想方法.

3.在學(xué)生感受數(shù)學(xué)美的同時(shí),激發(fā)學(xué)習(xí)的愛(ài)好,培養(yǎng)學(xué)生樂(lè)于求索的精神.

教學(xué)重點(diǎn),難點(diǎn)

重點(diǎn)是奇偶性概念的形成與函數(shù)奇偶性的判定

難點(diǎn)是對(duì)概念的熟悉

教學(xué)用具

投影儀,計(jì)算機(jī)

教學(xué)方法

引導(dǎo)發(fā)現(xiàn)法

教學(xué)過(guò)程

一.引入新課

前面我們已經(jīng)研究了函數(shù)的單調(diào)性

,它是反映函數(shù)在某一個(gè)區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì),今天我們繼續(xù)研究函數(shù)的另一個(gè)性質(zhì).從什么角度呢?將從對(duì)稱(chēng)的角度來(lái)研究函數(shù)的性質(zhì).

對(duì)稱(chēng)我們大家都很熟悉,在生活中有很多對(duì)稱(chēng),在數(shù)學(xué)中也能發(fā)現(xiàn)很多對(duì)稱(chēng)的問(wèn)題,大家回憶一下在我們所學(xué)的內(nèi)容中,非凡是函數(shù)中有沒(méi)有對(duì)稱(chēng)問(wèn)題呢?

(學(xué)生可能會(huì)舉出一些數(shù)值上的對(duì)稱(chēng)問(wèn)題,等,也可能會(huì)舉出一些圖象的對(duì)稱(chēng)問(wèn)題,此時(shí)教師可以引導(dǎo)學(xué)生把函數(shù)具體化,如和等.)

結(jié)合圖象提出這些對(duì)稱(chēng)是我們?cè)诔踔醒芯康年P(guān)于軸對(duì)稱(chēng)和關(guān)于原點(diǎn)對(duì)稱(chēng)問(wèn)題,而我們還曾研究過(guò)關(guān)于軸對(duì)稱(chēng)的問(wèn)題,你們舉的例子中還沒(méi)有這樣的,能舉出一個(gè)函數(shù)圖象關(guān)于軸對(duì)稱(chēng)的嗎?

學(xué)生經(jīng)過(guò)思考,能找出原因,由于函數(shù)是映射,一個(gè)只能對(duì)一個(gè),而不能有兩個(gè)不同的,故函數(shù)的圖象不可能關(guān)于軸對(duì)稱(chēng).最終提出我們今天將重點(diǎn)研究圖象關(guān)于軸對(duì)稱(chēng)和關(guān)于原點(diǎn)對(duì)稱(chēng)的問(wèn)題,從形的特征中找出它們?cè)跀?shù)值上的規(guī)律.

二.講解新課

2.函數(shù)的奇偶性(板書(shū))

教師從剛才的圖象中選出,用計(jì)算機(jī)打出,指出這是關(guān)于軸對(duì)稱(chēng)的圖象,然后問(wèn)學(xué)生初中是怎樣判定圖象關(guān)于軸對(duì)稱(chēng)呢?(由學(xué)生回答,是利用圖象的翻折后重合來(lái)判定)此時(shí)教師明確提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律?

學(xué)生開(kāi)始可能只會(huì)用語(yǔ)言去描述:自變量互為相反數(shù),函數(shù)值相等.教師可引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號(hào)表示.(借助課件演示令比較得出等式,再令,得到,詳見(jiàn)課件的使用)進(jìn)而再提出會(huì)不會(huì)在定義域內(nèi)存在,使與不等呢?(可用課件幫助演示讓動(dòng)起來(lái)觀察,發(fā)現(xiàn)結(jié)論,這樣的是不存在的)

從這個(gè)結(jié)論中就可以發(fā)現(xiàn)對(duì)定義域內(nèi)任意一個(gè),都有成立.最后讓學(xué)生用完整的語(yǔ)言給出定義,不準(zhǔn)確的地方教師予以提示或調(diào)整.

(1)偶函數(shù)的定義:假如對(duì)于函數(shù)的定義域內(nèi)任意一個(gè),都有,那么就叫做偶函數(shù).(板書(shū))

(給出定義后可讓學(xué)生舉幾個(gè)例子,如等以檢驗(yàn)一下對(duì)概念的初步熟悉)

提出新問(wèn)題:函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱(chēng),它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時(shí)打出或的圖象讓學(xué)生觀察研究)

學(xué)生可類(lèi)比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義.

(2)奇函數(shù)的定義:假如對(duì)于函數(shù)的定義域內(nèi)任意一個(gè),都有,那么就叫做奇函數(shù).(板書(shū))

(由于在定義形成時(shí)已經(jīng)有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)

例1.判定下列函數(shù)的奇偶性(板書(shū))

(1);(2);

(3);;

(5);(6).

(要求學(xué)生口答,選出12個(gè)題說(shuō)過(guò)程)

解:(1)是奇函數(shù).(2)是偶函數(shù).

(3),是偶函數(shù).

前三個(gè)題做完,教師做一次小結(jié),判定奇偶性,只需驗(yàn)證與之間的關(guān)系,但對(duì)你們的回答我不滿足,因?yàn)轭}目要求是判定奇偶性而你們只回答了一半,另一半沒(méi)有作答,以第(1)為例,說(shuō)明怎樣解決它不是偶函數(shù)的問(wèn)題呢?

學(xué)生經(jīng)過(guò)思考可以解決問(wèn)題,指出只要舉出一個(gè)反例說(shuō)明與不等.如即可說(shuō)明它不是偶函數(shù).(從這個(gè)問(wèn)題的解決中讓學(xué)生再次熟悉到定義中任意性的重要)

從(4)題開(kāi)始,學(xué)生的答案會(huì)有不同,可以讓學(xué)生先討論,教師再做評(píng)述.即第(4)題中表面成立的=不能經(jīng)受任意性的考驗(yàn),當(dāng)時(shí),由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性.

教師由此引導(dǎo)學(xué)生,通過(guò)剛才這個(gè)題目,你發(fā)現(xiàn)在判定中需要注重些什么?(若學(xué)生發(fā)現(xiàn)不了定義域的特征,教師可再?gòu)亩x啟發(fā),在定義域中有1,就必有1,有2,就必有2,有,就必有,有就必有,從而發(fā)現(xiàn)定義域應(yīng)關(guān)于原點(diǎn)對(duì)稱(chēng),再提出定義域關(guān)于原點(diǎn)對(duì)稱(chēng)是函數(shù)具有奇偶性的什么條件?

可以用(6)輔助說(shuō)明充分性不成立,用(5)說(shuō)明必要性成立,得出結(jié)論.

(3)定義域關(guān)于原點(diǎn)對(duì)稱(chēng)是函數(shù)具有奇偶性的必要但不充分條件.(板書(shū))

由學(xué)生小結(jié)判定奇偶性的步驟之后,教師再提出新的問(wèn)題:在剛才的幾個(gè)函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒(méi)有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說(shuō)明.

經(jīng)學(xué)生思考,可找到函數(shù).然后繼續(xù)提問(wèn):是不是具備這樣性質(zhì)的函數(shù)的解析式都只能寫(xiě)成這樣呢?能證實(shí)嗎?

例2.已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:.(板書(shū))(試由學(xué)生來(lái)完成)

證實(shí):既是奇函數(shù)也是偶函數(shù),

=,且,

=.

,即.

證后,教師請(qǐng)學(xué)生記住結(jié)論的同時(shí),追問(wèn)這樣的函數(shù)應(yīng)有多少個(gè)呢?學(xué)生開(kāi)始可能認(rèn)為只有一個(gè),經(jīng)教師提示可發(fā)現(xiàn),只是解析式的特征,若改變函數(shù)的定義域,如,,,,它們顯然是不同的函數(shù),但它們都是既是奇函數(shù)也是偶函數(shù).由上可知函數(shù)按其是否具有奇偶性可分為四類(lèi)

(4)函數(shù)按其是否具有奇偶性可分為四類(lèi):(板書(shū))

例3.判定下列函數(shù)的奇偶性(板書(shū))

(1);(2);(3).

由學(xué)生回答,不完整之處教師補(bǔ)充.

解:(1)當(dāng)時(shí),為奇函數(shù),當(dāng)時(shí),既不是奇函數(shù)也不是偶函數(shù).

(2)當(dāng)時(shí),既是奇函數(shù)也是偶函數(shù),當(dāng)時(shí),是偶函數(shù).

(3)當(dāng)時(shí),于是,

當(dāng)時(shí),,于是=,

綜上是奇函數(shù).

教師小結(jié)(1)(2)注重分類(lèi)討論的使用,(3)是分段函數(shù),當(dāng)檢驗(yàn),并不能說(shuō)明具備奇偶性,因?yàn)槠媾夹允菍?duì)函數(shù)整個(gè)定義域內(nèi)性質(zhì)的刻畫(huà),因此必須均有成立,二者缺一不可.

三.小結(jié)

1.奇偶性的概念

2.判定中注重的問(wèn)題

四.作業(yè)略

五.板書(shū)設(shè)計(jì)

2.函數(shù)的奇偶性例1.例3.

(1)偶函數(shù)定義

(2)奇函數(shù)定義

(3)定義域關(guān)于原點(diǎn)對(duì)稱(chēng)是函數(shù)例2.小結(jié)

具備奇偶性的必要條件

(4)函數(shù)按奇偶性分類(lèi)分四類(lèi)

探究活動(dòng)

(1)定義域?yàn)榈娜我夂瘮?shù)都可以表示成一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和,你能試證實(shí)之嗎?

(2)判定函數(shù)在上的單調(diào)性,并加以證實(shí).

在此基礎(chǔ)上試?yán)眠@個(gè)函數(shù)的單調(diào)性解決下面的問(wèn)題:

高二數(shù)學(xué)教案模板范文篇12

一、教學(xué)過(guò)程

1.復(fù)習(xí)。

反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關(guān)系。

求出函數(shù)y=x3的反函數(shù)。

2.新課。

先讓學(xué)生用幾何畫(huà)板畫(huà)出y=x3的圖象,學(xué)生紛紛動(dòng)手,很快畫(huà)出了函數(shù)的圖象。有部分學(xué)生發(fā)出了“咦”的一聲,因?yàn)樗麄兊玫搅巳缦碌膱D象(圖1):

教師在畫(huà)出上述圖象的學(xué)生中選定生1,將他的屏幕內(nèi)容通過(guò)教學(xué)系統(tǒng)放到其他同學(xué)的屏幕上,很快有學(xué)生作出反應(yīng)。

生2:這是y=x3的反函數(shù)y=的圖象。

師:對(duì),但是怎么會(huì)得到這個(gè)圖象,請(qǐng)大家討論。

(學(xué)生展開(kāi)討論,但找不出原因。)

師:我們請(qǐng)生1再給大家演示一下,大家?guī)退艺以颉?/p>

(生1將他的制作過(guò)程重新重復(fù)了一次。)

生3:?jiǎn)栴}出在他選擇的次序不對(duì)。

師:哪個(gè)次序?

生3:作點(diǎn)B前,選擇xA和xA3為B的坐標(biāo)時(shí),他先選擇xA3,后選擇xA,作出來(lái)的點(diǎn)的坐標(biāo)為(xA3,xA),而不是(xA,xA3)。

師:是這樣嗎?我們請(qǐng)生1再做一次。

(這次生1在做的過(guò)程當(dāng)中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的圖象。)

師:看來(lái)問(wèn)題確實(shí)是出在這個(gè)地方,那么請(qǐng)同學(xué)再想想,為什么他采用了錯(cuò)誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?

(學(xué)生再次陷入思考,一會(huì)兒有學(xué)生舉手。)

師:我們請(qǐng)生4來(lái)告訴大家。

生4:因?yàn)樗@樣做,正好是將y=x3上的點(diǎn)B(x,y)的橫坐標(biāo)x與縱坐標(biāo)y交換,而y=x3的反函數(shù)也正好是將x與y交換。

師:完全正確。下面我們進(jìn)一步研究y=x3的圖象及其反函數(shù)y=的圖象的.關(guān)系,同學(xué)們能不能看出這兩個(gè)函數(shù)的圖象有什么樣的關(guān)系?

(多數(shù)學(xué)生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進(jìn)一步追問(wèn)。)

師:怎么由y=x3的圖象得到y(tǒng)=的圖象?

生5:將y=x3的圖象上點(diǎn)的橫坐標(biāo)與縱坐標(biāo)交換,可得到y(tǒng)=的圖象。

師:將橫坐標(biāo)與縱坐標(biāo)互換?怎么換?

(學(xué)生一時(shí)未能明白教師的意思,場(chǎng)面一下子冷了下來(lái),教師不得不將問(wèn)題進(jìn)一步明確。)

師:我其實(shí)是想問(wèn)大家這兩個(gè)函數(shù)的圖象有沒(méi)有對(duì)稱(chēng)關(guān)系,有的話,是什么樣的對(duì)稱(chēng)關(guān)系?

(學(xué)生重新開(kāi)始觀察這兩個(gè)函數(shù)的圖象,一會(huì)兒有學(xué)生舉手。)

生6:我發(fā)現(xiàn)這兩個(gè)圖象應(yīng)是關(guān)于某條直線對(duì)稱(chēng)。

師:能說(shuō)說(shuō)是關(guān)于哪條直線對(duì)稱(chēng)嗎?

生6:我還沒(méi)找出來(lái)。

(接下來(lái),教師引導(dǎo)學(xué)生利用幾何畫(huà)板找出兩函數(shù)圖象的對(duì)稱(chēng)軸,畫(huà)出如下圖形,如圖2所示:)

學(xué)生通過(guò)移動(dòng)點(diǎn)A(點(diǎn)B、C隨之移動(dòng))后發(fā)現(xiàn),BC的中點(diǎn)M在同一條直線上,這條直線就是兩函數(shù)圖象的對(duì)稱(chēng)軸,在追蹤M點(diǎn)后,發(fā)現(xiàn)中點(diǎn)的軌跡是直線y=x。

生7:y=x3的圖象及其反函數(shù)y=的圖象關(guān)于直線y=x對(duì)稱(chēng)。

師:這個(gè)結(jié)論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對(duì)稱(chēng)關(guān)系嗎?請(qǐng)同學(xué)們用其他函數(shù)來(lái)試一試。

(學(xué)生紛紛畫(huà)出其他函數(shù)與其反函數(shù)的圖象進(jìn)行驗(yàn)證,最后大家一致得出結(jié)論:函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對(duì)稱(chēng)。)

還是有部分學(xué)生舉手,因?yàn)樗麄儺?huà)出了如下圖象(圖3):

教師巡視全班時(shí)已經(jīng)發(fā)現(xiàn)這個(gè)問(wèn)題,將這個(gè)圖象傳給全班學(xué)生后,幾乎所有人都看出了問(wèn)題所在:圖中函數(shù)y=x2(x∈R)沒(méi)有反函數(shù),②也不是函數(shù)的圖象。

最后教師與學(xué)生一起總結(jié):

點(diǎn)(x,y)與點(diǎn)(y,x)關(guān)于直線y=x對(duì)稱(chēng);

函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對(duì)稱(chēng)。

二、反思與點(diǎn)評(píng)

1.在開(kāi)學(xué)初,我就教學(xué)幾何畫(huà)板4。0的用法,在教函數(shù)圖象畫(huà)法的過(guò)程當(dāng)中,發(fā)現(xiàn)學(xué)生根據(jù)選定坐標(biāo)作點(diǎn)時(shí),不太注意選擇橫坐標(biāo)與縱坐標(biāo)的順序,本課設(shè)計(jì)起源于此。雖然幾何畫(huà)板4。04中,能直接根據(jù)函數(shù)解析式畫(huà)出圖象,但這樣反而不能揭示圖象對(duì)稱(chēng)的本質(zhì),所以本節(jié)課教學(xué)中,我有意選擇了幾何畫(huà)板4。0進(jìn)行教學(xué)。

2.荷蘭數(shù)學(xué)教育家弗賴(lài)登塔爾認(rèn)為,數(shù)學(xué)學(xué)習(xí)過(guò)程當(dāng)中,可借助于生動(dòng)直觀的形象來(lái)引導(dǎo)人們的思想過(guò)程,但常常由于圖形或想象的錯(cuò)誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過(guò)于直觀的例子常常會(huì)影響學(xué)生正確理解比較抽象的概念。

計(jì)算機(jī)作為一種現(xiàn)代信息技術(shù)工具,在直觀化方面有很強(qiáng)的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計(jì)算機(jī)都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計(jì)算機(jī),但不能達(dá)到更好地理解抽象概念,促進(jìn)學(xué)生思維的目的的話,這樣的教學(xué)中,計(jì)算機(jī)最多只是一種普通的直觀工具而已。

在本節(jié)課的教學(xué)中,計(jì)算機(jī)更多的是作為學(xué)生探索發(fā)現(xiàn)的工具,學(xué)生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對(duì)稱(chēng)關(guān)系,而且在更深層次上理解了反函數(shù)的概念,對(duì)反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。

當(dāng)前計(jì)算機(jī)用于中學(xué)數(shù)學(xué)的主要形式還是以輔助為主,更多的是把計(jì)算機(jī)作為一種直觀工具,有時(shí)甚至只是作為電子黑板使用,今后的發(fā)展方向應(yīng)是:將計(jì)算機(jī)作為學(xué)生的認(rèn)知工具,讓學(xué)生通過(guò)計(jì)算機(jī)發(fā)現(xiàn)探索,甚至利用計(jì)算機(jī)來(lái)做數(shù)學(xué),在此過(guò)程當(dāng)中更好地理解數(shù)學(xué)概念,促進(jìn)數(shù)學(xué)思維,發(fā)展數(shù)學(xué)創(chuàng)新能力。

3.在引出兩個(gè)函數(shù)圖象對(duì)稱(chēng)關(guān)系的時(shí)候,問(wèn)題設(shè)計(jì)不甚妥當(dāng),本來(lái)是想要學(xué)生回答兩個(gè)函數(shù)圖象對(duì)稱(chēng)的關(guān)系,但學(xué)生誤以為是問(wèn)如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學(xué)生引入歧途。這樣的問(wèn)題在今后的教學(xué)中是必須力求避免的。

高二數(shù)學(xué)教案模板范文篇13

一、教學(xué)內(nèi)容分析

圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無(wú)數(shù)次實(shí)踐后的高度抽象、恰當(dāng)?shù)乩枚x__題,許多時(shí)候能以簡(jiǎn)馭繁、因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來(lái)熟練的解題”。

二、學(xué)生學(xué)習(xí)情況分析

我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語(yǔ)言的表達(dá)能力也略顯不足。

三、設(shè)計(jì)思想

由于這部分知識(shí)較為抽象,如果離開(kāi)感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情、在教學(xué)時(shí),借助多媒體動(dòng)畫(huà),引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率、

四、教學(xué)目標(biāo)

1、深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用__解決問(wèn)題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。

2、通過(guò)對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對(duì)問(wèn)題的不斷引申,精心設(shè)問(wèn),引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣、

五、教學(xué)重點(diǎn)與難點(diǎn):

教學(xué)重點(diǎn)

1、對(duì)圓錐曲線定義的理解

2、利用圓錐曲線的定義求“最值”

3、“定義法”求軌跡方程

教學(xué)難點(diǎn):

巧用圓錐曲線定義__

高二數(shù)學(xué)教案模板范文篇14

●三維目標(biāo):

(1)知識(shí)與技能:

掌握歸納推理的技巧,并能運(yùn)用解決實(shí)際問(wèn)題。

(2)過(guò)程與方法:

通過(guò)“自主、合作與探究”實(shí)現(xiàn)“一切以學(xué)生為中心”的理念。

(3)情感、態(tài)度與價(jià)值觀:

感受數(shù)學(xué)的人文價(jià)值,提高學(xué)生的學(xué)習(xí)興趣,使其體會(huì)到數(shù)學(xué)學(xué)習(xí)的美感。

●教學(xué)重點(diǎn):

歸納推理及方法的總結(jié)。

●教學(xué)難點(diǎn):

歸納推理的含義及其具體應(yīng)用。

●教具準(zhǔn)備:

與教材內(nèi)容相關(guān)的資料。

●課時(shí)安排:

1課時(shí)

●教學(xué)過(guò)程:

一.問(wèn)題情境

(1)原理初探

①引入:“阿基米德曾對(duì)國(guó)王說(shuō),給我一個(gè)支點(diǎn),我將撬起整個(gè)地球!”

②提問(wèn):大家認(rèn)為可能嗎?他為何敢夸下如此海口?理由何在?

③探究:他是怎么發(fā)現(xiàn)“杠桿原理”的?

從而引入兩則小典故:

A:一個(gè)小孩,為何輕輕松松就能提起一大桶水?

B:修筑河堤時(shí),奴隸們是怎樣搬運(yùn)巨石的?

高二數(shù)學(xué)教案模板范文篇15

1.本節(jié)課的重點(diǎn)是理解算法的概念,體會(huì)算法的思想,難點(diǎn)是掌握簡(jiǎn)單問(wèn)題算法的表述.

2.本節(jié)課要重點(diǎn)掌握的規(guī)律方法

(1)掌握算法的特征,見(jiàn)講1;

(2)掌握設(shè)計(jì)算法的一般步驟,見(jiàn)講2;

(3)會(huì)設(shè)計(jì)實(shí)際問(wèn)題的算法,見(jiàn)講3.

3.本節(jié)課的易錯(cuò)點(diǎn)

(1)混淆算法的特征,如講1.

(2)算法語(yǔ)言不規(guī)范致誤,如講3.

課下能力提升(一)

[學(xué)業(yè)水平達(dá)標(biāo)練]

題組1算法的含義及特征

1.下列關(guān)于算法的說(shuō)法錯(cuò)誤的是()

A.一個(gè)算法的步驟是可逆的

B.描述算法可以有不同的方式

C.設(shè)計(jì)算法要本著簡(jiǎn)單方便的原則

D.一個(gè)算法不可以無(wú)止境地運(yùn)算下去

解析:選A由算法定義可知B、C、D對(duì),A錯(cuò).

2.下列語(yǔ)句表達(dá)的是算法的有()

①撥本地電話的過(guò)程為:1提起話筒;2撥號(hào);3等通話信號(hào);4開(kāi)始通話或掛機(jī);5結(jié)束通話;

②利用公式V=Sh計(jì)算底面積為3,高為4的三棱柱的體積;

③x2-2x-3=0;

④求所有能被3整除的正數(shù),即3,6,9,12,….

A.①②B.①②③

C.①②④D.①②③④

解析:選A算法通常是指按照一定規(guī)則解決某一類(lèi)問(wèn)題的明確和有限的步驟.①②都各表達(dá)了一種算法;③只是一個(gè)純數(shù)學(xué)問(wèn)題,不是一個(gè)明確步驟;④的步驟是無(wú)窮的,與算法的有窮性矛盾.

3.下列各式中S的值不可以用算法求解的是()

A.S=1+2+3+4

B.S=12+22+32+…+1002

C.S=1+12+…+110000

D.S=1+2+3+4+…

解析:選DD中的求和不符合算法步驟的有限性,所以它不可以用算法求解,故選D.

題組2算法設(shè)計(jì)

4.給出下面一個(gè)算法:

第一步,給出三個(gè)數(shù)x,y,z.

第二步,計(jì)算M=x+y+z.

第三步,計(jì)算N=13M.

第四步,得出每次計(jì)算結(jié)果.

則上述算法是()

A.求和B.求余數(shù)

C.求平均數(shù)D.先求和再求平均數(shù)

解析:選D由算法過(guò)程知,M為三數(shù)之和,N為這三數(shù)的平均數(shù).

5.(2016?東營(yíng)高一檢測(cè))一個(gè)算法步驟如下:

S1,S取值0,i取值1;

S2,如果i≤10,則執(zhí)行S3,否則執(zhí)行S6;

S3,計(jì)算S+i并將結(jié)果代替S;

S4,用i+2的值代替i;

S5,轉(zhuǎn)去執(zhí)行S2;

S6,輸出S.

運(yùn)行以上步驟后輸出的結(jié)果S=()

A.16B.25

C.36D.以上均不對(duì)

解析:選B由以上計(jì)算可知:S=1+3+5+7+9=25,答案為B.

6.給出下面的算法,它解決的是()

第一步,輸入x.

第二步,如果x<0,則y=x2;否則執(zhí)行下一步.

第三步,如果x=0,則y=2;否則y=-x2.

第四步,輸出y.

A.求函數(shù)y=x2?x<0?,-x2?x≥0?的函數(shù)值

B.求函數(shù)y=x2?x<0?,2?x=0?,-x2?x>0?的函數(shù)值

C.求函數(shù)y=x2?x>0?,2?x=0?,-x2?x<0?的函數(shù)值

D.以上都不正確

解析:選B由算法知,當(dāng)x<0時(shí),y=x2;當(dāng)x=0時(shí),y=2;當(dāng)x>0時(shí),y=-x2.故選B.

7.試設(shè)計(jì)一個(gè)判斷圓(x-a)2+(y-b)2=r2和直線Ax+By+C=0位置關(guān)系的算法.

解:算法步驟如下:

第一步,輸入圓心的坐標(biāo)(a,b)、半徑r和直線方程的系數(shù)A、B、C.

第二步,計(jì)算z1=Aa+Bb+C.

第三步,計(jì)算z2=A2+B2.

第四步,計(jì)算d=z1z2.

第五步,如果d>r,則輸出“相離”;如果d=r,則輸出“相切”;如果d

8.某商場(chǎng)舉辦優(yōu)惠促銷(xiāo)活動(dòng).若購(gòu)物金額在800元以上(不含800元),打7折;若購(gòu)物金額在400元以上(不含400元)800元以下(含800元),打8折;否則,不打折.請(qǐng)為商場(chǎng)收銀員設(shè)計(jì)一個(gè)算法,要求輸入購(gòu)物金額x,輸出實(shí)際交款額y.

解:算法步驟如下:

第一步,輸入購(gòu)物金額x(x>0).

第二步,判斷“x>800”是否成立,若是,則y=0.7x,轉(zhuǎn)第四步;否則,執(zhí)行第三步.

第三步,判斷“x>400”是否成立,若是,則y=0.8x;否則,y=x.

第四步,輸出y,結(jié)束算法.

題組3算法的實(shí)際應(yīng)用

9.國(guó)際奧委會(huì)宣布2020年夏季奧運(yùn)會(huì)主辦城市為日本的東京.據(jù)《中國(guó)體育報(bào)》報(bào)道:對(duì)參與競(jìng)選的5個(gè)夏季奧林匹克運(yùn)動(dòng)會(huì)申辦城市進(jìn)行表決的操作程序是:首先進(jìn)行第一輪投票,如果有一個(gè)城市得票數(shù)超過(guò)總票數(shù)的一半,那么該城市將獲得舉辦權(quán);如果所有申辦城市得票數(shù)都不超過(guò)總票數(shù)的一半,則將得票最少的城市淘汰,然后進(jìn)行第二輪投票;如果第二輪投票仍沒(méi)選出主辦城市,將進(jìn)行第三輪投票,如此重復(fù)投票,直到選出一個(gè)主辦城市為止,寫(xiě)出投票過(guò)程的算法.

解:算法如下:

第一步,投票.

第二步,統(tǒng)計(jì)票數(shù),如果一個(gè)城市得票數(shù)超過(guò)總票數(shù)的一半,那么該城市就獲得主辦權(quán),否則淘汰得票數(shù)最少的城市并轉(zhuǎn)第一步.

第三步,宣布主辦城市.

[能力提升綜合練]

1.小明中午放學(xué)回家自己煮面條吃,有下面幾道工序:①洗鍋、盛水2分鐘;②洗菜6分鐘;③準(zhǔn)備面條及佐料2分鐘;④用鍋把水燒開(kāi)10分鐘;⑤煮面條和菜共3分鐘.以上各道工序,除了④之外,一次只能進(jìn)行一道工序.小明要將面條煮好,最少要用()

A.13分鐘B.14分鐘

C.15分鐘D.23分鐘

解析:選C①洗鍋、盛水2分鐘+④用鍋把水燒開(kāi)10分鐘(同時(shí)②洗菜6分鐘+③準(zhǔn)備面條及佐料2分鐘)+⑤煮面條和菜共3分鐘=15分鐘.解決一個(gè)問(wèn)題的算法不是的,但在設(shè)計(jì)時(shí)要綜合考慮各個(gè)方面的因素,選擇一種較好的算法.

2.在用二分法求方程零點(diǎn)的算法中,下列說(shuō)法正確的是()

A.這個(gè)算法可以求方程所有的零點(diǎn)

B.這個(gè)算法可以求任何方程的零點(diǎn)

C.這個(gè)算法能求方程所有的近似零點(diǎn)

D.這個(gè)算法并不一定能求方程所有的近似零點(diǎn)

解析:選D二分法求方程零點(diǎn)的算法中,僅能求方程的一些特殊的近似零點(diǎn)(滿足函數(shù)零點(diǎn)存在性定理的條件),故D正確.

3.(2016?青島質(zhì)檢)結(jié)合下面的算法:

第一步,輸入x.

第二步,判斷x是否小于0,若是,則輸出x+2,否則執(zhí)行第三步.

第三步,輸出x-1.

當(dāng)輸入的x的值為-1,0,1時(shí),輸出的結(jié)果分別為()

A.-1,0,1B.-1,1,0

C.1,-1,0D.0,-1,1

解析:選C根據(jù)x值與0的關(guān)系選擇執(zhí)行不同的步驟.

4.有如下算法:

第一步,輸入不小于2的正整數(shù)n.

第二步,判斷n是否為2.若n=2,則n滿足條件;若n>2,則執(zhí)行第三步.

第三步,依次從2到n-1檢驗(yàn)?zāi)懿荒苷齨,若不能整除,則n滿足條件.

則上述算法滿足條件的n是()

A.質(zhì)數(shù)B.奇數(shù)

C.偶數(shù)D.合數(shù)

解析:選A根據(jù)質(zhì)數(shù)、奇數(shù)、偶數(shù)、合數(shù)的定義可知,滿足條件的n是質(zhì)數(shù).

5.(2016?濟(jì)南檢測(cè))輸入一個(gè)x值,利用y=x-1求函數(shù)值的算法如下,請(qǐng)將所缺部分補(bǔ)充完整:

第一步:輸入x;

第二步:________;

第三步:當(dāng)x<1時(shí),計(jì)算y=1-x;

第四步:輸出y.

解析:以x-1與0的大小關(guān)系為分類(lèi)準(zhǔn)則知第二步應(yīng)填當(dāng)x≥1時(shí),計(jì)算y=x-1.

答案:當(dāng)x≥1時(shí),計(jì)算y=x-1

6.已知一個(gè)算法如下:

第一步,令m=a.

第二步,如果b<m,則m=b.<p="">

第三步,如果c<m,則m=c.<p="">

第四步,輸出m.

如果a=3,b=6,c=2,則執(zhí)行這個(gè)算法的結(jié)果是________.

解析:這個(gè)算法是求a,b,c三個(gè)數(shù)中的最小值,故這個(gè)算法的結(jié)果是2.

答案:2

7.下面給出了一個(gè)問(wèn)題的算法:

第一步,輸入a.

第二步,如果a≥4,則y=2a-1;否則,y=a2-2a+3.

第三步,輸出y的值.

問(wèn):(1)這個(gè)算法解決的是什么問(wèn)題?

(2)當(dāng)輸入的a的值為多少時(shí),輸出的數(shù)值最小?最小值是多少?

解:(1)這個(gè)算法解決的是求分段函數(shù)

y=2a-1,a≥4,a2-2a+3,a<4的函數(shù)值的問(wèn)題.

(2)當(dāng)a≥4時(shí),y=2a-1≥7;

當(dāng)a<4時(shí),y=a2-2a+3=(a-1)2+2≥2,

∵當(dāng)a=1時(shí),y取得最小值2.

∴當(dāng)輸入的a值為1時(shí),輸出的數(shù)值最小為2.

8.“韓信點(diǎn)兵”問(wèn)題:韓信是漢高祖手下的大將,他英勇善戰(zhàn),謀略超群,為漢朝的建立立下了不朽功勛.據(jù)說(shuō)他在一次點(diǎn)兵的時(shí)候,為保住軍事秘密,不讓敵人知道自己部隊(duì)的軍事實(shí)力,采用下述點(diǎn)兵方法:①先令士兵從1~3報(bào)數(shù),結(jié)果最后一個(gè)士兵報(bào)2;②又令士兵從1~5報(bào)數(shù),結(jié)果最后一個(gè)士兵報(bào)3;③又令士兵從1~7報(bào)數(shù),結(jié)果最后一個(gè)士兵報(bào)4.這樣韓信很快算出自己部隊(duì)里士兵的總數(shù).請(qǐng)?jiān)O(shè)計(jì)一個(gè)算法,求出士兵至少有多少人.

解:第一步,首先確定最小的滿足除以3余2的正整數(shù):2.

第二步,依次加3就得到所有除以3余2的正整數(shù):2,5,8,11,14,17,20,….

第三步,在上列數(shù)中確定最小的滿足除以5余3的正整數(shù):8.

第四步,然后在自然數(shù)內(nèi)在8的基礎(chǔ)上依次加上15,得到8,23,38,53,….

第五步,在上列數(shù)中確定最小的滿足除以7余4的正整數(shù):53.

即士兵至少有53人.

515320