小學六年級的數學知識是比較難的,除了上課要認真聽,課后也要主動復習和鞏固學過的知識。以下是小編為大家收集的關于小學六年級下冊數學知識點的相關內容,供大家參考!
1.1整數和整除的意義
1.在數物體的時候,用來表示物體個數的數1,2,3,4,5,,叫做整數
2.在正整數1,2,3,4,5,,的前面添上號,得到的數1,2,3,4,5,,叫做負整數
3.零和正整數統(tǒng)稱為自然數
4.正整數、負整數和零統(tǒng)稱為整數
5.整數a除以整數b,如果除得的商正好是整數而沒有余數,我們就說a能被b整除,或者說b能整除a。
1.2因數和倍數
1.如果整數a能被整數b整除,a就叫做b倍數,b就叫做a的因數
3.一個數的因數的個數是有限的,其中最小的因數是1,最大的因數是它本身
4.一個數的倍數的個數是無限的,其中最小的倍數是它本身
1.3能被2,5整除的數
1.個位數字是0,2,4,6,8的數都能被2整除
3.在正整數中(除1外),與奇數相鄰的兩個數是偶數
4.在正整數中,與偶數相鄰的兩個數是奇數
5.個位數字是0,5的數都能被5整除
6.0是偶數
1.4素數、合數與分解素因數
1.只含有因數1及本身的整數叫做素數或質數
2.除了1及本身還有別的因數,這樣的數叫做合數
3.1既不是素數也不是合數
4.奇數和偶數統(tǒng)稱為正整數,素數、合數和1統(tǒng)稱為正整數
5.每個合數都可以寫成幾個素數相乘的形式,這幾個素數都叫做這個合數的素因數
6.把一個合數用素因數相乘的形式表示出來,叫做分解素因數。
7.通常用什么方法分解素因數:樹枝分解法,短除法
1.5公因數與最大公因數
1.幾個數公有的因數,叫做這幾個數的公因數,其最大的一個叫做這幾個數的最大公因數
2.如果兩個數中,較小數是較大數的因數,那么這兩個數的最大公因數較小的數
負數
1、負數的由來:
為了表示相反意義的兩個量(如盈利虧損、收入支出……),光有學過的0 1 3.42/5……是遠遠不夠的。所以出現了負數,以盈利為正、虧損為負;以收入為正、支出為負
2、負數:小于0的數叫負數(不包括0),數軸上0左邊的數叫做負數。
若一個數小于0,則稱它是一個負數。
負數有無數個,其中有(負整數,負分數和負小數)
負數的寫法:
數字前面加負號“—”號,不可以省略
例如:—2,—5.33,—45,—2/5
正數:
大于0的數叫正數(不包括0),數軸上0右邊的數叫做正數
若一個數大于0,則稱它是一個正數。正數有無數個,其中有(正整數,正分數和正小數)
正數的寫法:數字前面可以加正號“+”號,也可以省略不寫。
例如:+2,5.33,+45,2/5
4、0
既不是正數,也不是負數,它是正、負數的分界限
負數都小于0,正數都大于0,負數都比正數小,正數都比負數大
5、數軸:
6、比較兩數的大?。?/p>
①利用數軸:
負數<0<正數或左邊<右邊
②利用正負數含義:正數之間比較大小,數字大的就大,數字小的就小。負數之間比較大小,數字大的反而小,數字小的反而大
1/3>1/6 —1/3<—1/6
1、認識圓柱和圓錐,掌握它們的基本特征。認識圓柱的底面、側面和高。認識圓錐的底面和高。
2、探索并掌握圓柱的側面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關的簡單實際問題。
3、通過觀察、設計和制作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯系,發(fā)展學生的空間觀念。
4、圓柱的兩個圓面叫做底面,周圍的面叫做側面,底面是平面,側面是曲面。
5、圓柱的側面沿高展開后是長方形,長方形的長等于圓柱底面的周長,長方形的寬等于圓柱的高,當底面周長和高相等時,側面沿高展開后是一個正方形。
6、圓柱的表面積=圓柱的側面積+底面積×2即S表=S側+S底×2或2πr×h+2×π。
7、圓柱的側面積=底面周長×高即S側=Ch或2πr×。
8、圓柱的體積=圓柱的底面積×高,即V=sh或πr2×。
進一法:實際中,使用的材料都要比計算的結果多一些,因此,要保留數的時候,省略的位上的是4或者比4小,都要向前一位進1。這種取近似值的方法叫做進一法。
9、圓錐只有一個底面,底面是個圓。圓錐的側面是個曲面。
10、從圓錐的頂點到底面圓心的距離是圓錐的高。圓錐只有一條高。(測量圓錐的高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離)
11、把圓錐的側面展開得到一個扇形。
12、圓錐的體積等于與它等底等高的圓柱體積的三分之一,即V錐=1/3Sh或πr2×h÷。
13、常見的圓柱圓錐解決問題:
①壓路機壓過路面面積(求側面積);
②壓路機壓過路面長度(求底面周長);
③水桶鐵皮(求側面積和一個底面積);
④廚師帽(求側面積和一個底面積);通風管(求側面積)。
小學數學正方形對角線怎么算
1、正方形對角線公式
正方形的對角線,與兩邊成形的是等腰直角三角形。如果正方形的邊長為a,那么對角線的長度就可以根據勾股定理計算,對角線=√2a。
正方形周長計算公式:邊長×4
正方形面積計算公式:邊長×邊長
2、正方形判定定理
(1)對角線相等的菱形是正方形。
(2)有一個角為直角的菱形是正方形。
(3)對角線互相垂直的矩形是正方形。
(4)一組鄰邊相等的矩形是正方形。
(5)一組鄰邊相等且有一個角是直角的平行四邊形是正方形。
數學列方程解答應用題的步驟
(1)弄清題意,確定未知數并用x表示;
(2)找出題中的數量之間的相等關系;
(3)列方程,解方程;
(4)檢查或驗算,寫出答案。
1.負數:負數是數學術語,指小于0的實數,如3。
任何正數前加上負號都等于負數。在數軸線上,負數都在0的左側,所有的負數都比自然數小。負數用負號“-”標記,如2,5.33,45,0.6等。
2.正數:大于0的數叫正數(不包括0)
若一個數大于零(>0),則稱它是一個正數。正數的前面可以加上正號“+”來表示。正數有無數個,其中分正整數,正分數和正無理數。
3.正數的幾何意義:數軸上0右邊的數叫做正數
4.數軸:規(guī)定了原點,正方向和單位長度的直線叫數軸。
所有的實數都可以用數軸上的點來表示。也可以用數軸來比較兩個實數的大小。
5.數軸的三要素:原點、單位長度、正方向。
6.圓柱:以矩形的一邊所在直線為旋轉軸,其余三邊旋轉形成的.面所圍成的旋轉體
即AG矩形的一條邊為軸,旋轉360°所得的幾何體就是圓柱。
其中AG叫做圓柱的軸,AG的長度叫做圓柱的高,所有平行于AG的線段叫做圓柱的母線,DA和D'G旋轉形成的兩個圓叫做圓柱的底面,DD'旋轉形成的曲面叫做圓柱的側面。
7.圓柱的體積:圓柱所占空間的大小,叫做這個圓柱體的體積。設一個圓柱底面半徑為r,高為h,則體積V:V=πr2h;如S為底面積,高為h,體積為V:V=Sh
8.圓柱的側面積:圓柱的側面積=底面的周長x高,S側=Ch(注:c為πd)
圓柱的兩個圓面叫做底面(又分上底和下底);圓柱有一個曲面,叫做側面;兩個底面之間的距離叫做高(高有無數條)。
特征:圓柱的底面都是圓,并且大小一樣。
9.圓錐解析幾何定義:圓錐面和一個截它的平面(滿足交線為圓)組成的空間幾何圖形叫圓錐。
10.圓錐立體幾何定義:以直角三角形的一條直角邊所在直線為旋轉軸,其余兩邊旋轉形成的面所圍成的旋轉體叫做圓錐。該直角邊叫圓錐的軸。
11.圓錐的體積:一個圓錐所占空間的大小,叫做這個圓錐的體積。一個圓錐的體積等于與它等底等高的圓柱的體積的1/3。
根據圓柱體積公式V=Sh(V=rrπh),得出圓錐體積公式:V=1/3Sh
S是圓錐的底面積,h是圓錐的高,r是圓錐的底面半徑
12.圓錐體展開圖的'繪制:圓錐體展開圖由一個扇形(圓錐的側面)和一個圓(圓錐的底面)組成。(如右圖)在繪制指定圓錐的展開圖時,一般知道a(母線長)和d(底面直徑)
13.圓錐的表面積:一個圓錐表面的面積叫做這個圓錐的表面積。
圓錐的表面積由側面積和底面積兩部分組成。
S=πR2(n/360)+πr2或(1/2)αR2+πr2(此n為角度制,α為弧度制,α=π(n/180)
14.圓柱與圓錐的關系:與圓柱等底等高的圓錐體積是圓柱體積的三分之一。
體積和高相等的圓錐與圓柱(等低等高)之間,圓錐的底面積是圓柱的三倍。
體積和底面積相等的圓錐與圓柱(等低等高)之間,圓錐的高是圓柱的三倍。
底面積和高不相等的圓柱圓錐不相等。
15.生活中的圓錐:生活中經常出現的圓錐有:沙堆、漏斗、帽子。圓錐在日常生活中也是不可或缺的。